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§ 1. INnTrRODUCTION.

Tur present paper continues my researches in the theory of gamma functions.
Previously to a certain extent I obtained known results by new methods : none of
2 M 2
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the succceding investigations however have, I believe, been undertaken or suggested
by other mathematicians.

In the first paper® published in the connection I attempted to give a homogeneous
theory of the ordinary gamma function, considered from the point of view of
WerersTrASS function theory. I introduced a parameter o, and showed that the
theory was subordinate to that of a function satisfying the difference equation

Flet o) = 1) ==,
s being any complex quantity.
That theory led naturally to the considerationt of the G function, satisfying the
difference equation

Gz 4 1) = I'(2)G(z),

and substantially a function all of whose properties could be obtained by differentiating
the simple gamma function with respect to the parameter.

I next considered] an extended function G(z/r) satisfying the two functional
relations

T—1

SN =T()6: et =) ) ),

and reducible to the G function when 7 = 1. Several points in that paper suggested
the formation of a symmetrical double gamma function, in which 7 should be replaced
by the quotient of two parameters o, and o, In the present investigation such a
function is defined, and its theory developed in, 1 hope, complete detail.  The
function 1s the natural extension to two parameters of the simple gamma function
Uz o).

It is necessary for a complete exposition of the theory to consider the properties of
what I propose to call double Bernoullian numbers and functions : functions which
are the natural extension to two parameters of the simple Bernoullian funetions,
considered in Part I1. of the earliest paper of the series.  Such a theory is developed
in Part L. of the present paper.

In Part IL I consider the elementary theory of the double gamma function. Tt
18 shown that certain symmetrical modular constants arise as finite terms of
asymptotic expansions in a manner exactly analogous to the origin of KuLers
constant y.

Such considerations lead naturally to Part IIL, in which are deduced from a
contour integral, which is a double generalisation of RimmaNN's { function, certain
noteworthy asymptotic approximations, of which the most important is an extension

* Barngs, “The Theory of the Gamma Function,” ¢ Messenger of Mathematics,” vol. 29, pp. 64-128.

T BarNES, “The Theory of the G Function,” ¢ Quarterly Journal of Mathematics,” vol. 31, pp. 264-314.

1 BARNES, “Genesis of the Double Gamma Function,” ‘Proceedings of the London Mathematical
Society,’ vol. 31, pp. 358-381.
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of Srirning’s theorem. By the aid of this theory it is possible to express the
logarithm of the double gamma function and the double gamma modular constants as
contour integrals similar to those given in Part IIL of the ¢ Theory of the Gamma
Function.’

In Part IV. I consider the multiplication and transformation theories of double
gamma functions as well as certain curious integral formulee, which correspond to
Raapw's theorem for the simple gamma function, and are elementary cases of a
general theorem connecting successive similar transcendents of higher orders.

In Part V. the asymptotic expansion of the double gamma function is obtained,
and it is shown that the function cannot arise as the solution of a differential equation
whose coefficients are more simple transcendents.

There exist similar functions of any number of parameters, and these transcendents
I propose to call multiple gamma functions. I reserve the formal expression of their
properties for publication elsewhere. I have worked out the theory for double
gamma functions independently inasmuch as, the complex variable being two
dimensional, there are many points in which a higher analogy breaks down : and also,
since many proofs in the higher theory are, in their simplest form, inductive and,
to be rigorous, require a knowledge of the theorem for the two simplest cases. Not
only so, but in the case of the double gamma functions it is possible to give easily an
algebraical theory (such as that worked out in Part II.), which is more simple than
if one derived all the formule from the fundamental consideration of certain contour
integrals.

T append a statement of the notation adopted in this paper, mentioning the place
in the present series of investigations where such notation is used for the first time.

Derivation. Name. Symbol. First occurrence.
Algebraic solution of Simple Bernoullian func-|  S,(a|w) | “CGamma Function,” § 11.
tion
Ha + o) = fla) = am
S'n(o] o) Simple Bernoullian num- 1Bs(w) “ Gamma Function,” § 15.
T ber
Algebraic solution of Double Bernoullian | 98,(¢ | @y, @3) | For the case of equal para-
function meters :

o+ o) ~ /(o)

=8 (0 | 0g) +

“ G Function,” § 15.

Sn iy (0]02) In general :

n+1 “ Double Gamma Function,”
§2.
oS'n0 | o1, wo) Double Bernoullian num- | 9B, 41(01, 02) | “ Double Gamma Function,”
T ber §7
/2 Simple gamma function Ty(z]w) | “Gamma Function,” § 2.
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Name.

Symbol.

ar

dzr

log Iy (2] w)

Logarithm derivative of
simple gamma function

(2 ] o)

THEORY OF THE

First occurrence.

“ Gramma Function,” § 2.
b)

Solution of f{z + 1) = T'()f(2)

& function .

G(z)

“ G Function,” § 3.

b

Solution of f(z + 1) = I‘(i) ()

Unsymmetrical double
gamma function

“Cenesis,” &e., § 1.

stant

Vide §§ 18-24 Double gamma function Py(2] 01, w9) | “ Double Gamma Function,”
§19.
dr log Tz | 01, o) Logarithm  derivatives |y, (2]w, 05)] “ Double Gamma Function,”
dor 0T AL of double gamma func- §19.
tion
LA =) e (= 2)y-1dz Simple Riemann ¢ (zeta) {(s,00,0) “ Gamma Function,” § 23.
I 1 — ¢we function
(L= 9) oyens| (= 2)""'dz | Double Riemann ¢ func- | (s, @ | o1, 0,) | For equal parameters ;
27 (T—ee)(1l —¢os)  tion “ G Function,” § 23.
L In general :
“Double Gamma Function,”
§ 39.
Y log w Simple gamma modular vii{w) “ Gamma Function,” § 2.
o ® form
Finite terms of certain asymp- | Unsymmetrical double O(r) “(renesis,” &e., §§ 3 and 4.
totic limits gamma modular forms D(r)
Do. do. Symmetrical double | vya (v, @) | “Double Gamma Function,”
gamma modular forms | yaa(wy, wy) §§ 21 and 23.
Do. do. Glaisher-Kinkelin -~ con- A “ O Function,” § 3.

\/27%
o

Simple Stirling modular
form

pi(e)

“ Gamma Function,” § 31.

Limit of a certain definite in-
tegral

Double Stirling modular
form

pafon, 02)

“ Double Gamma Function,”
§43.

Constants which take the values
0, * 1, according to the dis-
tribution of w; and w;

m
m'

M

“ Double Gamma Function,”
§ 21.
“Double Gamma Function,”

The symbolic notation by which F,[ f(z 4 w)] is written for
St o+ o) = [zt 0) — f(z+ o)

is introduced in § 49,
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Parr L
The Theory of Double Bernoullvan Functions and Numbers.

§ 2. In the “Theory of the Gamma Function,” Part 1L, we have defined the simple
Bernoullian function 8,(¢|e) as that solution of the difference equation

fla+ o) = flo) = a,

where 7 is a positive integer, which is such that it is an algebraical polynomial and
S.(o]e) = 0. And it was proved that such a solution does exist.

Tn exactly the same manner it may be proved that the difference equation

/
a4 o) = f(3) = S.(a]o) + 2000

has an algebraic solution, which is a rational integral polynomial of degree n 4 2.

The difference between any two solutions will be a simply periodic function of
period w, and will therefore be a constant if the solutions are both algebraic
polynomials.

There thus exists a unique algebraical polynomial of degree n -4 2, which is a
solution of the difference equation.

Flato) = fla) = 8] og) + 101

n+ 1
with the condition f'(0) = 0.

This solution we call the double Bernoullian function of « with parameters o, and
oy, and we denote 1t by .S, (a|w,w,). By symmetry with this notation the simple
Bernoullian function would be denoted by S, (a|w).

We shall often omit the parameters w, and w,, when there is no doubt as to their
existence, and write the function simply .S, («).

§ 8. We now proceed to show that the double Bernoullian function of « of order n
is also the unique algebraical polynomial which is the solution of the difference
equation

‘/)(Cl + Cl)z) """‘f(@) == Sﬂ(({‘ ‘ 0)1) —}" S,L/j]:(jLiog) )
with the condition /(o) = 0.
For since

- ‘ S'11+ )
S o) = Sa) = Salo) )

we have at once

S+ o) + o)) = S (@ 4 0y) — S,(r + o) +,S.(a)
= 8,(¢ +o,|w) — S e|e,) =a =8,(¢ 4o |o)— S.(at] ).
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And therefore if we put
Sla) = Su(a + 05) — 8,(a) —8,(a]o)
Jila + o) — file) =
Now ,S,(a) and S,(¢/w) are algebraical polynomials of a, and therefore f,(a) is

also such a function.  And, therefore, since it is simply periodic of period ,, it must
be a constant.  Thus we have

we shall have

S+ @) — S, (a) = S,(¢]w) -+ constant . . . . . (2)
Again, integrating the relation (1) with respect to « between o and w,, we have

wy+wy w Wy
f o, () ey — j oS, (c)der (o oS, ()da = 0,

0 0

. “2 S0«
_sinee [ S| wy)do = wof.f?ill_:,__l_]f’_z).
0 ol

Integrating the relation (2) in the same manner between o and w,, we obtain for
the value of the constant

(g ; S (0] @)
—_ wJo S| w)da= wl

And thus ,S,(a) is the unique algebraic solution of the equation

. \ S
fla + wy) — f(a) = 8,(a|w) + ""7'&"155"’]?1) ;

with the condition /(o) = 0.

If'rom the symmetrical nature of the equations which give ,S,(¢]w,, o,), we see that
this function itself must be symmetrical in o, and ,.

§ 4. If now we assume

o A
Sale), o) = a0t 4 a, @t L o,
the caleulation of the highest cocfficients may be readily effected.
For we have

Suin(0] @)

n -+ 1

avtl ar )\ By . [0\ B,
—_—— [ g [(1)‘ - e aﬁ~3w‘3 »
(n+1) @, 2 1) 2 > 5/ 5 2

Hence if we substitute the assumed expangion for S, () and equate corresponding
powers of a, we find ‘

Sl + @) — 8,(a) = B8,(a|wy) -+

(n+2) 0ya, =~

n+2Y(n 4+ 1 . v
EADOAD 0 4y (04 Doy auy = — 1,
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n4+2) (n4+1)n (n+1)n n\B
(nt2) (it 1)n )‘5)1 ) 0, g+ ——‘ﬂ——-) o o,y + N @, = <1>Elw2,
(P . -t B /
and so on.

On solving these equations successively we readily obtain

1
I : -
T (k1) (0 2) ey,
v = 1ty
LT 9 D ey
and, since B, = ¢, .
1 @ ey + Jew,
@, = T 0,0, .
Thus ’
g (a,]w . ) _ e _ @, + @,) o Qﬁigwg?i:ljj’rcql% 4
R 172 (n+1) (n+2) w0, 2(n -+ 1)w1w2 12,0, o

Further terms can be calculated if necessary. It will be seen, however, that they
form what we propose to call double Bernoullian numbers, whose properties may be
investigated without the necessity of their formal evaluation.

Corollary.  We note that

a’ Ao, + o) 0+ 0, + 30,0,

S(a|lw,w) = a
Si( ) b 2) bw,ws 4o, 0, + 1200,
And hence
. a a(w, + 0y) | 0 + w4+ 300,
Salo, w,y)= —_ e
* K 20,0, 20,0, 120, 0,
a ) -+ W,
S, Na|w,, w,)= — — -2
21 ( ‘ b 2) @, Zwle
1
S(a|w, wg)=—.
P} ( 1> 2) w0,

It will be found that these expressions are of constant occurrence in the course of
the present investigation.

Note also that
| _ 7 __ale + )
2So(er| 0, 0,) = 20,0, Qo0y
§ 5. We will now prove that, if n—ks0, &k > 0,

!
S0, w)= (_7_1{%55 S| op, @) + 88,9 (0|0, 0,).

We have, when n — k30 and £ < 0,
8,0 (@4 o) — 8.0 (a) = 8,7 (a]0,)
, n!
= 8.0 (0] o) + 71 Sua(@] o)

(““ Theory of the Gamma Function,” § 14).
VOL. CXCVI.—A. 2N
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and therefore

5,0 (a + ) — 8,® (a)
Si_r4(0] @y
= 80000+ 1 [Suda + o) = 8 (o) = Fried]

Thus if we write
n!

fa) = 5.9 (a) = 7 Sii (@)

g — !
we shall have

flat o) = fla) =80 (0]w)— 2§, (0]wy)

(n— 1k + 1))
= 0 (“ Gamma Function,” § 15).
Similarly

(o o) = f(a) =

and therefore since f{) is an algebraical polynomial in «, it is a constant.
On making ¢ = 0 and remembering that ,S,(0) = 0, we obtain

) — /c) oSt (a) = 48,9 (o),

which is the required result.
§ 6. We are now in a position to prove that

! y —_ o Y lt"(o.!,w”) -
.[0 2S/z (((/) da = —~ a4 1 2b RN (O[mh w3)+ (/1, + ). (n+ 2)
‘0, w, , nw(‘)!“’ )
JOQS“ () da = ~ i oS (0] @y, @)+ (it 1). (n 1,_‘))

and at the same time the important relation
g« __(n 4+ )! q ' )
S0 (0] 0y, 0y) = n 10| o, wy).
Since ,S5,(0) = 0 we see from the fundamental difference equation that

SN OIS
J — PRI T
() = Lenelon)

Hence, if we put @ = o, in § 5, we see that when n—/% 5 0, and £ >0,

7!

S (w) = S,P(0) = (n ;:"/::)igs”wl' (@)
7!
(“l; }. l ) S7lﬁ-1+l<olw2>

Take now the relation
nt

SO @) = S (@) + 800)
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and integrate with respect to a between 0 and ), we obtain

S,V (@) — 8,47V (0) = (An-:HISAY j S._i(a) da + o, ;S,% (o),
so that

n! n!

o [ S@ = = 0 80 0) 4 L Seala)

Write now n for (n—£k), as is evidently allowable, since both n and % are positive
integers, and we have

71 !

_ Sft+2 (0 )
L+ Iy

(n+ 1).(n + 2)¢

r; S, (a) da = SUL(0) +
0

We thus see that

(ﬂ iy )v Sie (0] o, 00)

is independent of %, since this is the only time in the relation just obtained which
depends on £.
Putting then & = 1, we have when £ > 0 and » 5 .

n+ k) o
S (0] oy @) = (n + 1)! S ur (0] @), wy),

which is one of the relations required.
And also
TS (@) de = — S (0] @)
J'o WSy (a)da = — — 138 w1 (0) + (n+1). (n+ 2
another of the given relations. The second integral formula of course may be
written down by symmetry.
We notice that in the notation formerly 1ntroduced (““ Gamma Function,” §15)
we have
s 0102 Bus ()

(n+1) (n+ 2) n+ 2
and therefore that each of these expressions
=0 when 7 1s odd,
(_):}I}g+1 w21z+1

T D).+ 2) when 7 is eveu.

Thus we see that when n is odd

["S(@da=— 00 80 (0).

2 N2
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§ 7. We now introduce double Bernoullian numbers analogous to the simple
Bernoullian numbers introduced in the theory of the gamma function.
In that theory the simple nth Bernoullian number was defined by the relation

__ So]@)
IBH (w) - n 9

and now the nth double Bernoullian number is given by

L(O ! wb wo)
n ’

2Bﬂ (“’1» “’2) =B
We note that by the theorem of § 6 we may put

B (‘1’17 ‘”z) == (n + ]ﬁ)zﬁ’w*/ (0(‘% ),

and therefore
7!
(% )‘ 9l 1 (“’p wz)-

25, (0) =

§ 8. At this point we may conveniently note the reduction which takes place in
the double Bernoullian functions and numbers when the parameters are equal to one
another.

If we put 0, = 0, = w we have as the single difference equation of the nth double
Bernoullian function the relation

Sfla+ o) = fla) = 8,(a]0) 4 B, (o),
and the function is now defined as the algebraical solution of this equation with the
condition ,8,(0|w, w) = 0.
Put now
» S (0 I (‘))

S(a)= =8, (a]e) + (¢ — o) 8,(t]0) + « w41

9

and we have
fla 4+ o) — f(¢) = oS (a]e) -+ m?;@i@%@') .

Hence, the other definition conditions being satisfied, we see that

1 Sn; 0| w
(o 0) = 78, (al) — L 8,1 (ala) 4+ &

that is, the double Bernoullian function when the parameters are equal reduces to
simple Bernoullian functions and numbers.
1t will be seen later that it.is for this reason that it was possible to obtain all the
expansions in the theory of the G function in terms of simple Bernoullian functions.
Note that the above relation may be written

v — 1
QS”<C& l «, w) = - co © S” (Cl/‘w) - a; th‘-l (a’ l w) + g; IB/L+1 ((x))
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On differentiation we have
s . a—o o ; 1o 1
S (alo, 0) =8, (0]0) + T (t]o)= | S (@]0) + L Buys (o)

(2

so that B (0‘0% w) = -8, (O l w) - ; 1B (w),
and therefore B (0, 0) = — B, (0) — : 1Biii (o).

§ 9. We now see at once that

an*‘ﬂ “’1 { ,

(n+ 1D(n+ 2) o, 0, T2+ 1) e, w,

+ <n) 2By (0, 0y) @1 4 (9) By (@, ) 07 4.

CLU'F] + QBJ. (wl, wl) CL’L

S (alo), wy)=

1
and so complete the expansion of § 4.
For by MacLAURIN'S theorem we have
Sn 0 q OSMVOHVQ) 0)
QS,L (('Llcol, wg) = CLQS/M (0) 4 91 ’( ) +. .. -+ A{n_-{-é(j‘ CL’L+2>

since the higher differentials vanish.
From the few terms found in § 4 we see that

(n+2(0) — o
2

n! (o) + o)

OSA’(Ln+ 1)(0) e —

€
2,0,

Now when n s k and £ >0, we have
n !
(n — k)!
and thus we have the expansion in question.
§ 10. It may now be shown that

QBIL—“/ﬁ+j1 (‘”1: wz)a

SO (0) =

S0(@) = (=) Sulor 4 05 — @) + LS00 0lo) + S (o)

or, as we may write it,
S, (a) = (=)" S, (0 + 0y — a) + (—) ! LBy (@) + 1By (@)]-

Remembering the value of, |B,,,(w) we thus prove that
S, () = 8, (0, + 0, — @), when n is even,

S, () = — 8, (0, + 0, — a) + (;l ~1 B,k;_] (0" + "), when = is odd.
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Substitute wy—a for @ in the fundamental difference equation and we find
Su (o) + 0y — a) = S,(wy —a) =8, (0, = alwy) + B,y (),
and therefore, since S, (w,—a|w,) = (—)""' S,(¢]w,), we have

S + 0y — a) — S, (0, — a) = (=)' 8,(a]w,) + 1By ().
If therefore we put

a

S(a) = (=) [2811 (0, + 0y — a) + 5: 1By (‘“7)] + @ 1Bt (),

we see that f{(a) is an algebraic solution of the difference equation
J(o+ o) = f(a) = S, (a]oy) + By (o),

and therefore can only differ by a constant from ,S,(a).
Determine this constant by making ¢ = 0 and we have the relation

S,(0) = (=) [Sul0) + 03 — @) — S,(0, + o)] + (’;);a By (@)

[42

LBy ().

When n is odd the last two terms cancel each other, and when « is even |B, (@)
vanishes.

Hence Su(a|o), o)) = (=) [Si(o, + 0y — @) — S, (0, + @,)].
From the fundamental difference equations we see at once that

S;l 1(‘)‘(") Sn+1(01w)
Sulor o) =55+

=B, (wl) + 1By (“’2)5

and therefore we have the relation stated.
§ 11. We may now show that, when = is even,

Bn_/Z

w
QBn(wl; wz) fee (-——)f _ (wlﬁ -1 + mzu—‘J)7

2n

a simple expression for the even double Bernoullian numbers which corresponds in
some degree to the fact that the even simple Bernoullian numbers vanish.
On differentiating with regard to a the result of the previous paragraph we find

(@] oy, @) + (=) o (0, + 0y — a) = 0.

From the fundamental difference equations we have

Su(@ 4+ 0, + 0)) — 8, (@ + o) — 8, (¢ + ) + 8, (a) = o,
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S (01) + o8 (@5) — o8 (0)

oS (@) + “’2) =g
S (0) + ¥, (0[(02) + S (o] w).

and hence

i

Thus, since (* Gamma Function,” § 15)
N, (0]w) = 0 when n is odd

¥
5=1 —] .
=(—)%" B, ;! when n is even,
a

o (0 + @) = oY, (0), when nis odd ;

we see that
B o (0" + 07"), when 7 is even.

(o1 4 0) = 80 (0) + (=)

and

But our former relation gives us, when 7 is even

Nl + w) = — ¥, (0)~

Hence, when # is even,
2 e
(wlu«-l + (1)2”—'1),

Sl =(=F - -

which is equivalent to the relation required.
§ 12. We now proceed to show that

¢ oSn a
‘( Sn(a) da’ = N;;j_iﬂ(i) —a 2B/l+] ((1)1, &)2}}

We have
{ S’"H (0 ! wﬁ)
S (a + o) — S, (a) =8, (¢]w,) + w1

Hence, integrating with respect to «
"nin(0] @)

@ -+ wy @ Wy (42
j S, (a) da — JO oS, (@) da = jo oS, () de + -[o S, (a|w,) da+ a w1

But (“ Gamma Function,” § 19)
¢ Lo Sano]ey)  Swn(e|w)
jo S, (¢t]w,) do+ « v e

so that, if f(a) '—f « (@) da, this function is an algebraic solution of the difference

Sut (@] @)

equation
S, (a) da + ]

fat o) —f(@) =",
But this difference equation is evidently satisfied by

@ oy o ,__S/n+_g,ﬁ{|, 92) ) ,,,1, B ,
o, UO Se(@) do — 273 (n+2)] t g S ()

‘ - SSNCIE
=o = S @]

Spi (@)
R 2 S J (0, o).
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Hence as these two solutions both vanish when ¢ = 0, we have

@ oS pq (@)
L) S (@) da =200 0 B (o, )

As a corollary we have on differentiation
S (@) = (4 1)48, (4) + o854 (o).

§ 13. The multiplication theory of double Bernoullian functions may be con-
veniently expressed by the formula

@, wg\)
wm’ )

From the fundamental difference relation we have

, co r @ (a,9>“i
, w1\
o3, < m <OL -+ ;) l oy, ‘1’2} =8, {ma|o), 0} - w l (a > 4 \ 1 !
N : i m [
A L w4 1

o 1 ,
Hence o o5, (it

o, wy) satisfies the difference equation

f'(a -+ ?1/\ S(a) =8, <a, (;):\/] 4

and is the only aigebraical solution such that f{0) =

o

1 - ®] Wy
Hence o 2 (malo), o)) =5, (¢ |- ),

which is the relation required.

As a corollary we see that the nth double Bernoullian number is homogeneous
and of degree (n—1) in the «’s.

For in §9 we have seen that in the expansion of

S (] 0, 0,),

the part of the coefficient of a*=*! which involves the o's is By, o).
§ 14. The transformation of the parameters of the double Bernoullian function is
given by the relation

S, <a,

as we proceed to prove.

o p—1lg=-1 I [ o
w0, 9{/> %S .S, (a_l___“il_*_fi’ﬂ o), w;)

}7 k= ozmo
P - Wy Wy
+'2J92Lu+1(‘“1a ‘“2) - 2-Bu+1<‘p ) '(/ >

p-led /A/COI (o,

Let f((l) e 2 2 Sn (“ + + o Iw].’ (')2),

then we obtain at once
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Aot ™)== 2[ ,,(w+ +w1)"2k (o+2)]

= S,l< ) + | ,M( 1) (“ Gamma Function,” § 18).

Thus f(a) is an algebraic solution of the difference equation satisfied by

2S,,( a

©L ) The two solutions can then only differ by a constant, and thus

p’q
2S,l(ca

where R, is independent of «.

01 @ Sty ey | Loy
> q) DI Sn<a+ + .

k=0 t=0

Wy, (‘)0/ + Rm

To determine this constant, let us integrate between 0 and %1 We find

p
f:lgs ( a

and therefore by § 6

>dc¢—- 3 ’ w,,(C—}—

wla wz> (ZC + Rn;

B Dy
@ ©; ©, t "4’2< >
- }71 B/H—l( ! > "I" 1

p

lor,
q~1‘38"+1<5"1 + %) - QSH+1<&> .
= =g, oBui (wl, wz) -+ E,O q + ““Rn, by § 12,

n + 1
1 1Bate (wo) n+2 <w2>
o= gwl 2B7l+1 (wl, (1)2) + <(]n+1 - >V;1; ..;.71 + n -+ 1 +

(““ Gamma Funotlon,” § 18).
And therefore

w, ®
—_ (;)71 2Bﬂ+1<k291v’ 7_7g> = Qg Il+1 (0)1, wz) + Rﬂ’

so that R, = pq oB.y1 (0, 0,) — B,,+1<(;1 a;’)

On substituting this value we have the theorem enunciated.
As a corollary we have on making a=0.

(1)1, mo) == BJI+1<

p—l g—1 /k
s, S\ o

k=01=0

) @y

s >Pq 2Bsy (1, ®,),

§ 15. We now proceed to prove the expansion of fundamental importance in the
theory of double Bernoullian functions :—

at’
ze6 az

800 @ 1o/ ()
(1 — o)yl — oy 2 SI%(a) + 55 T+ !

VOL. CXCVI.—A. 2 0
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In this expansion the double Bernoullian functions have o, and o, for parameters,
and the expansion is valid provided |z| is less than the smaller of the two quantities

2t P

(01 (02 H

|
Fov within a circle whose radius is less than this quantity, the function

zfﬁ e—ar

(U= o) (1= o)

has no poles, and hence it is expansible in a Taylor’s series of powers of z.
Thus we may assume, for all finite values of «,
e — A
(1 — 6_'"12) (1 . 6—-0)25) z

__Ao(a)_l_fl]g(,?z_}_ L. +(‘—) ,,,,,,, n+ L

n!

where 1t is obvious that the functions of @ which enter as coefficients are all alge-
braical polynomials.

Change now ¢ into @ + o, and subtract the expansion so obtained from the one
just written.

We find

1 —¢wr

e é@;%(fi&) — Ay(a) + Ay + o)) + “@1%—(;5‘3‘% +..

et Jo(@) = Ju(e + o)

!

e (=) A

But in the “ Theory of the Gamma Function,” § 20, we obtained the expansion which
may be written ‘

A SI’(CAQ’Q,) . S’,KC&J&):&)

= — 8 %(a]wy) + oot (=R A

1 — g n!
Equating coeflicients in these two expansions, we obtain
Ay + @) — Ay(a) =0
Aga + o)) — Ay(a) = 8,7 (a]wy)
Sle 4+ o) — file) = 8'\(a|wy)
o+ o) = fila) = F(a|o,)
and it is obvious that a similar set of equations hold in which o, and w, are inter-

changed.

Hence A,(a) is a constant whose value, from the first term of the expansion, is

) } — 2S1(3)(Ob ‘ w1, w2) by § 4,

ON)

Again Ay(a) = ,8,%(a]e,, o,), for these two expressions can only differ by a
constamt which by § 4 and the actual expansion is at once seen to vanish.
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Finally for all positive integral values of n, f,(a) can only differ from ,8", (@], w,)
by a constant,—z.e., let us say,

Fila) = S|y, 0,) +

Differentiate the expansion thus obtained with respect to «, and we find

— Rpaz _ gsl(m(a)7

S”(Q) L
(1 — c_mlz) (1 — c—wgz) — QS](S)(O&) T ” + L. + (_)14—12__.‘_‘1} o + L.

!

and hence we have finally (§6)

ro—ax _ 281(3)(01)

) oS
(1 —eor)y(l—eo) 2 25, %(ar) + ‘IL,)z + ...+ (=)

n—1 94_8";(“_)
n!

AR S

which is the expansion required.

This expansion may be used to define the double Bernoullian numbers, and all their
properties may be deduced from it. A procedure analogous to the one here suggested
will be the one employed in the general theory of multiple Bernoullian functions.

§ 16. Several expansions of constant occurrence may be deduced from the one just
obtained.

In the first place, note that we may write the expansion in the form

ze” 1 0, + w, a o (a)
(1 —eor) (1 —e~9%)  ww52 + 20,0, 0,0, F 1 ° +
o («
+ (_)7:—14«”77:1,_,(_227;_1_ L.

Put now @ = 0, and we have by definition of the double Bernoullian numbers,

z 1 o, + o,
(1 — e o) (1 — ¢~ w¥) - 0,02 Yo, + 2B1 (wp wz)é + ...
a— 2By, wy)
We thus have (§ 11)
? _ 1 o + 0y | 9B (0, 0,) + 283 (“j@g_“{g273 +
(1 —eo9) (1 —e-v%) w2 20,0, 0! 21 ” e
By, (0, ©
+ 272 “(‘_é_l)_i;}' 2)z2n+l _,!__ L
® B ((4) m—1 + 2n;~l)z2;:z
S (_\m-1_"m\"1 2
+ m=>-=(l ( ) 2. (2’/71)!

And the last series may be written

2 2 1 1 )
‘L ————— Z ¢
2[1-—6*“‘1z+l~—e""’2’ C Wy o, J

Hence we find
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# S W S S Tt
Aoy (L — o) ~ 2 (L —omw) " 2(1 — o w) T 3
—_— ,,,1,., + § Bm"'l(wl’ w") PR |
0,7 =0 (2n)!

as the expansion from which the odd double Bernoullian numbers may be derived.
Finally if we integrate the -fundamental expansion of § 15 with respect to a
between 0 and «, we obtain
1 —ee o9 (e) — 33,@ (0)

(0= o)1 — omoe) = ~ [ (@) = &, 0]+ e

)n 9 “) 2
’ + n! ( -
or, as we may write it,
- 1_“ ej‘uz I ,,,f?;, QSL((‘) o (_) n=l okn ((L) o
(1 —emof) (L —e=o2) oo 5o (@) + ST T !l T

as the expansion from which the double Bernoullian functions themselves are at once

obtained.
All these expansions are valid within the circle whose radius is the smaller of the

2
and | =%

two quantities

@y Wy

§ 17. Hitherto we have considered the double Bernoullian function as defined by
one of two difference equations, each of which involves the simple Bernoullian

function.
We proceed now to prove that, to a linear function of «, ,S,(a) is the only rational
integral algebraic function of « satisfying the difference equation

fa4 o + o) — fa 4+ o) —f(0+ o)+ fa) =a

" In the first place it is at once evident that ,8,(«) does satisfy this equation.
Again the difference of any two solutions is a solution of

Slat o+ o) = flo+ o) = flo+ o) + f(o) =0
Putting fla+ w)— fa) = ¢(a),
we have d(a + o) — ¢ (a) = 0.
Hence, if f(a) is the difference of two algebraic solutions of the original equation,

$(a) will be an algebraic simply periodic function, and therefore a constant.
And thus we shall have

J(¢ 4+ o) — f(a) = constant,
so that if’ /(@) is to be an algebraic polynomial, it must be of the form

A+ p,
where X and p are constant with respect to a.
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Thus the difference of any two rational integral algebraic solutions of

F(a + o+ o) = f(a + @) = f(a + o) + f(0) = @

is of the form Aa + p.  Whence the theorem in question.

[Dr. E. W. Horsox has kindly pointed out to me that the analysis of the
preceding paragraphs would be much simplified by starting from the direct definition
of the double Bernoullian function in §17.

We should thus define the double Bernoullian function by the expansion

R a S|y, 0,)

oy e = o =S () o (o) )

ANt n!

On differentiating with respect to @, we get the expression of § 15.
From the relation

1 —e (@tw)z 1—e—uz P

(e (e (1) (b= = dmeree

we obtain the fundamental ditference relations for the double Bernoullian function.
The result of § 10 follows from the identity

1—e¢a 1— elwrtw,—a)z . 1 1
(1—¢ o) (L—emos) (1 — eor) (1'— o) Tl —eor® (L—=eme¥)

1

3

and that of §14 from

p—1q—

S (1 —emor) (I—emo¥)
k=0 I=

{1 _ 6—(a—|— kj«;l + %’2)2} — pq —_— o g
, (1= 7)(1=e0)

1
0

Inasmuch as theoretically the properties of an algebraical polynomial should not
be derived from consideration of the coeflicients of an infinite series, the original
investigation has been retained. 1 had already proposed to myself to work out the

theory of multiple Benoullian functions by a method closely allied to that suggested
by Dr. HossoN.—Note added July 3, 1900. ]

Parr 1L
The Double Gamma Function Ty(a|wy,0,) and its Llementary Properties.

§18. In the elementary consideration of the simple gamma function it was found
to be necessary to rely on two algebraical limit theorems :—

(1) Evrer’s theorem  Le[1 + 44 ... + %— logn] =1y.

n! R
(2) StirLING's theorem ant [;Lg;—e—_;] = /2w
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In an analogous treatment of the double gamma function we may expect that
similar limit theorems will be required. This, in fact, is the case; but for our
present purpose it is suflicient to take particular cases of the asymptotic expansion
for log T'(z).

To make use of this approximation we need only remember that (“‘Theory of the
Gamma Function,” § 39) if 2z and » be any finite complex quantities, and = a positive
integer,

logﬁ(z + mw) =log I''[z2 4+ (n + o|w] — logT, (z

m=0

o).

We suppose that such values of the logarithms are chosen that additive terms
involving 2w do not enter. In other words, we shall say that the logarithms have
their absolute values, the formula just written being merely a convenient way of
writing the identity

n Iz + (n )
wllo(z-}-mw) = hl +I‘(1(z)+ Dol

On diﬁ’érentiating this identity with respect to z we have
n . 1

u.=o(?+ mw) =

Uz 4+ (0 + Dolo] — O

®)

with the notation of § 2 of the ““ Theory of the Gamma Function.”
§ 19. The double gamma function of z with parameters w, and o, we write

Iy (2] @), 0,).
When there is no doubt as to their presence the parameters are omitted. From
this function we form the subsidiary system

{
P,V (zl‘”p wy) = é;log Ly (2] @), oy).

) d?
Jo? (2| 0, wy) = @log Ty(z] @y, @y).
and so on.

As a definition we assume

. © = 1
(2w 0y) = — 2 3

my,=0 mz=0(z + My, + Wbizw;})g

This double series is, by EisexsTeIN’S Theorem,* absolutely convergent, provided
the ratio of ®, to w, is not real and negative. This limitation on the parameters
holds throughout the whole theory of the double gamma functions. It corresponds
to the limitation in WEIERSTRASS theory of elliptic functions that I' must not be a
real quantity.

* . ForsyTH, “ Theory of Functions,” § 56.
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We shall show that by successive integrations we may determine I'y(z|w,, w,) as a
function symmetrical in w, and o, such that

L7l + ) — [(z| @y) IS o),
Iy (z) pi(w;)

Pyl + @) — (2| @) g
Ty7l(z) p1(@y)

where p,(0w) = /(27/w) (“ Theory of the Gamma Function,”§ 31), and m and m’ are
integers (unity or zero), to be determined in accordance with the detailed theory
which we proceed to give.

And the function so determined will be unique, provided

Li[2l'y(z| o), 0y)] = 1.
2=0
§ 20. We readily see that the function

%) o o
Yo (] 01, @) = %z,_zo,nfo &+ Q)

where 0 = m 0, + m,0, satisties the two difference equations
Pz + ) = @ (2) — "’1(3)(2 | @)
BOe o) = (2) —

where here, as always, we suppress the parameters of the functions ,"(2)
(r = 1,2, ... )and I'y(z) when these parameters are supposed to exist in perfectly

general form.
For we have at once from the definition-series

Uz + o) — $P(z) = — { 3 T ]

w0 (2 + myw, )

= — ,9(z| wy). (c Gamma, Function,” §2)
Next, we may show that the function

1 1
Yoy P(2] 01 wg) = — 7y (@, wy) + + 5 3 [(7:532 - Q‘;]

my=0 my=0

satisfies the two difference equations

U2z + o)) = P,2(2) — P P(2] wy)
%(3)(2 + o,) = ¢2(2)(z) - 11’1(2)@!“’1)’
whatever be the value of the constant y,,(w;, w,).
For the series for ¢,”(z) is absolutely convergent so long as

¢+ 0P
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is regarded as one term, and we may subtract two absolutely convergent series by a
term-by-term process. Hence we have immediately

@ 1
B (et o) =9 () = — 3

i (2 o gy
and therefore (¢ Theory of the Gamma Function,” § 2)
W (2 + o) — 9" (1) = — §“ (=
Similarly, U@ (2 4 @) — P, (

)= i (e
§ 21. It may now be shown that the function

w,)-

w,).

[\

[N

my =0 my=0

2=, 1 1 2]
- ‘l’z(l) (zl‘”u wz) = Z%Ya (“’1: ‘*’2) + va (‘“1: wz) + 17 + %3 I:;;‘ﬁ — 6‘*” ﬁ‘gJ

satisfies the two difference relations

. 2mar
U0t o) = () = = ) + 2

. L . 2m/m
0V (2 + 0g) — P (2) = — Y (z]w)) + AP

for certain values of the numbers m and m’, provided

i aw 'n/ 1 1 o

'),21 (ml, w2> - 7};‘——&0[7)1150 15':052_2 - W) Wy 1Og "
LG 1 log ) |
o (g0, o) = lago, ~ logau} |

the principal values of the logarithms being taken.
We may write 1, P(z) in the form
1 oo 1 1 2
- nL:tm nz}’zl (@), @) + vy (), wy) -+ P + miof':o {é+ RS + S?’H’

and now we obtain at once

U (2 + @) — P, (2)

L 2‘ 1 " 1 § %, (1)1 “]
= —uw wy, w,) + Lt e e B e o=
1721 ( b 2) n=o [777,;—‘0 %+ My @y 1)L;-‘Oz + (W’ + 1) 0y + My 0 m=0my=0 ng
Hence we may take
mare
(2 4 @) — PV (2) = — V(2 @) + 2 w,

provided

mre

— (s, e

w1y (@1, 0) = P,V (2] 0y) — 2 o

n ] n ] n n’ P

+ Lt " S —_ = — - 3 —1"21 .
mmol e 5 Mg®y gy =02 F Mooy + (0 + 1)@y =0 m=0 Q2]
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or, utilising § 19 Corollary, provided
oyyai(o, @y) + 2 ??gf = Lt [¢l<1>[z + (0 + D ay|oy] + 3Pz + (n -+ 1) o] 0,]
— WO+ (1) (o o) oa] =3 ¥ ],
z| is very large, and

But (““ Gamma Function,” Part IV.) we know that when
2m

~ not real and negative,
[0)]

2+«

o - 1

logP1(4+Ctlw)»—< -1

4+ terms which vanish when

In every case the principal value of the logarithm is to be taken, uc., that value

> {bgc; + log m} — ; +%log/w—

becomes infinite.

~
“

whose amplitude lies between —= and .
log% + log w = log z

Now
in all cases except when z lies in the region formed by lines from the origin to the

points —w and —1 (shaded in the figure).

When 2 does lie within this region, we readily see that

log (; + log o = logz + 2m

A

log = + log o = log z — 2m

if T (), the imaginary part of o, is positive, and
®

if I (@), the imaginary part of o, is negative.

Thus
z| is infinite,

log Ty (2 + a|w) = <4 ZEL - }-) Hlog z + 2k} — w -+ %logzg

-+ terms which vanish when

o
g r

where k = 0, unless z lie within the region between the axes to —1 and — w,

VOL. CXCVI.—A,
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and where & == 4 1, tho upper or lower sign being taken according as I(w) is positive
or negative, when z does lie within this region.

On differentiating, we have the derived expansion®
) i 1 1 - ¢ /
Y V(4 o) = &)(og@—k 2hmy)

-+ terms which vanish when'|z| becomes infinite,

the principal value of the logarithm being again taken, and £ being determined as
before.

Substituting in the expression for y, (o, w,), we have

T 1 1
Y (@), 0,) + 2 T T [w log nw, + o log ne,

@y = [ @

»l_ it )7, :2]‘7 .
— logn. (0, + ) —3 ¥ g .W,‘jl’
w, ;

N2
iy = 0 iy = 0 Qs [OF N

.

where & = 0, unless ; or
: ’ (0, + o,) does not [ w, does not

w, does 1 (o, + o) does}
lie in the region bounded by lines from the origin to —  and —w,. |1t is understood,

of course, that the principal values of the logarithms are to be taken. |

w, does

When, as in the figures } lie within the region of exception, £

(0, + w,) doés not
= + 1, the upper or lower sign being taken according as I(w,) is positive or nega-
tive.

@+ @, / W,
! /

() + € ™~
] 2 ~/
Wy

_ . e . - w ®,) should

From the diagrams, we see at once that it is impossible that (1 + )

o, should not

lie within the region bounded by the lines from the origin to —1 and w,.

Take now m = £k, that is to say, let m be such that we have m = 0, unless
w, does 1. . ) . . ) -

' } lie in the region of exception, and m = 4 1 according as I(w,)
(0; + w,) does not '

is positive or negative, when this exceptional circumstance takes place.

* According to M. Poincaré, we may not in general differentiate an asymptotic expression. The one
in question, however, may be readily established by the methods employed for log Iy (# + ¢
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Then

. ‘]_ [ [ 1
Yoo, w,) = Lt [— {log nw, + log nw, — log n(w, + w)} —3 3 .
n=wn | 010y my =0 mE:OIlv
But this expression is symmetrical in o, and o,; and we must therefore have the
Y 1 2
analogous relation

Qm/ e

PO+ ) = ) = = O] ag) +

w, does

where m’ = 0, unless } lie within the region bounded by the axes

o, -+ o,) does not
from the origin to —w, and —1, in which case m’ = 4 1, the upper or lower sign
being taken as I () is positive or negative.

Provided therefore that

Yo (0, 0,) = Lt [—L log 1 — 2 E’ L ’—1~{log o, + log 0, — log (0, + wz}],

Q
new | 070, iy =0 my=0 02 1wy

we have, with the assigned values of m and m/, the two difference relations

9,

U V(2 4 o) — P10 (2) = — V(2] wy) + _7(701_71{ ,
. (D ! (1 ) 2m/mre

Pl (2 w)) — 0 (2) = — V(2] w)) + ";717

The function sy, (@, w,) we propose to call the first double gamma modular form.
Tt will subsequently be expressed in terms of the function D(r) introduced into the
theory of the functions G (z|7) (““ Geenesis of the Double Gamma Function,” § 4).

It will be seen later that the algebra of the double gamma function would have

been slightly simplified had a modified value been taken for this function y, (o, w,),
and the analogue shortly to be considered, yyy(o;, o). I did not observe this fact
until the theory had been completely developed, and the matter is scarcely of suffi-
cient importance to demand the labour which such a change would entail.
Corollary.—Notice that it has been proved incidentally that
1

R

im0 e (0 + My,)?
is infinite, when % is infinite, like o0 log n.

§ 22. As the numbers in m and m’ enter constantly into the analysis, it is necessary
to consider their properties.

Suppose that the functions log z, log,z, log,z are natural logarithms (with e as
base), which are real when z is real and positive, and which are vendered uniform by
cross-cuts along the axes of —1, —w, and —w, respectively.

2 v 2
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Then it is readily seen that
log, (o, + ) — log, o, = log (&, + w,) — log w, — 2mm
log,, (@) + @) — log,@y = log (
log,, (@, 4 w,) —log, @, == log (@, + w,) — log w, — 2m'm

log,, (@, + @y) — log, o, = log (0, + w,) — log @, — 2mm.

w, + w,) = log @, — 2m'm

By inspection of a diagram we see that m and m' both vanish if the difference of
the amplitudes of o, and o, is less than @, these amplitudes being measured between
0 and - o positively or negatively from the positive half of the real axis. In
particular-when the real parts of o, and «, are both positive, m and m’ both vanish.
Not only so, but in all cases either m or m/ must vanish.

Again, if the difference of the amplitudes of w, and o, is greater than 7, m and m
cannot both vanish. In fact, in this case we have the important relation

m o =

w,\ . . 0,0 .
) 18 negative or positive. This

the upper or lower sign being taken according as T<
L w,

result is intuitive geometrically ; in the figure, for instance, two cases are indicated

€+ / Wy
i/ ‘ :(:

- / ' GZ.)E’

i -~
§ 2 N .
&:l,/“i u{,’z /_( =
7

. . S, . .
in which ]_(f” is negative.
) -

Ifor corresponding to the unaccented valuc of w,,

m = 1'(r
5
m =0

and corresponding to the accented value of w,,

m == 0 }
m == =1

Thus in both cases m = m' = 1.

No guch simple expression can be given for m -} m/, a number which is of constant
occurrence in the higher theory.

However, from the values for m and m’ previously given, we see that when the
axes of @, and w, include the axis of —1 within an angle less than two right angles,
the values of (m <4 m’) are given by the table
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(m 4+ m) T(w1) I(w; + o)
1 + ve + e
-1 + e — e
-1 — e + e
1 — e — e

and therefore m -+ m" = 4 1, the upper or lower signs being taken according as
(o, + w,) and I(®,) have the same or opposite signs.
§ 23. It may now be shown that, if C have any arbitrary value, the function

2

- 2 yony 03) + yfoon, 02) o o 2\ -2
Ty (2| o), wy) = C e e I ' | B | [‘(\1—}"%)8 o QJL

. my =0 g =0 i

where 0 = mw, -+ m,0,, will satisfy the two difference relations

Iz - K % b 9 % 1y -
PQ ({ }-ml) — 11(~IO)) e mm (w ") s
T,7¢) ~

\/QW
Vo,

Pz_l(z,+w‘32 J— Pl(ﬂwl)_ e—"lm’m(f_ - g) ;
Iy () 2m "

Wy

where m and m’ are the numbers previously specified, and

a1 -+ @, 7 1 / 2 v+ 1 ) \
vas (@, wg) = Lt [z R e P L e (1 +“’I> —nt 1og<1+2)

a=aw 0 o & 2601(03 Wy 1
w; + o
+ ”21;;;02 {log (01 + ;) ~ log , — log "’2}] d

the principal values of the logarithms being taken.
Observe that with the notation previously introduced (“Theory of the Gamma
Funetion,” §§ 16 and 31) we may write these difference relations in the form
1?34(7zi: ml.) — P1(: | wl) . SN | w9)
Iy7i(z) prl@;)
_I‘gilﬁj‘_‘%) — Fl(?JEol} p—m'm iz | @)
I'y7(2) ()
The proof, to which we now proceed, is exactly analogous to the one just given.
We have

112_1(»?! -+ wz) . €.‘3’3‘.m12+7213m1+7»z»2w1 T+ wy Tt }’}I ﬁ/ 2z (7)21 S 1)(01 + MWy )
LI o2 L , ] ]
T My + My,

I,71() ’ B

=0 my=0

) 2z 27"

where 7,, and vy,, are understood, as always, to mean vy (w;; ;) and yo(w;, o,).
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Substitute now the value of vy (v, w,) obtained in § 21, and we find

G — e 220, + o)
SO

z
Tona flog w, + log w, — log (o, 4 wy)} + w]'yg_{l .

o F
8

X Lt [QXP- {2@1 + w,? log 1 ﬁ ﬁ/ {? + (my + 1) + m.gwge_%!}-t ,

2 = oo Zwla), [ my=0my=0 <+ mywy + My,

oy + o & O Dz 4+ (n + 1) (0 + @,)] @]
x Lt [GXP'{ o ??Q} U\ [z + (0 + 1) g |y Iy[2 +(7L+1)co7|wq‘}

= ex). [2/2)1 o flog o, + log w3 = log (w, + w,)} + wl'ygg] LT

LW,

by the employment of the identity of § 18. Their principal values must throughout
be assigned to the logarithms,

But, as has been seen in §21, from the formula obtained in the © Theory of the
Gamma Function,” § 41, we have when
axis of —a,

log T (z + a|w) = < I) A %> {log z + 2kmwi} — §+ log p (o)

Z

is large and z not in the vieinity of the

-+ terms which vanish when [2] is infinite,

where £ = 0, unless # lies within the region between the axes of —1 and —w, in
which case & = -+ 1, the upper or lower sign being taken as I(w) is positive or
negative. The principal value of log 2 is to be taken, and the prescription to be
given to log I'\(z 4+ a]w) is left indeterminate : it is obvious that we only get additive
terms involving 2, which vanish in the sequel.

Inasmuch as when 7 is large, none of the points

et () (o + o), 24 (04 1) o, andz 4+ (14 1) o,
lie in the vicinity of the negative direction of the axis of w, we may substitute the
. . L L TG+ w)
values given by the asymptotic expansion in the expression for — DT
We shall find

1“;1 (z + ml) | [zMwI + o

2w wq

{log nw, -+ log o, — log (w4 @)}t + w1y,

iSO Dt e
O
0 0 \

o + o)

@y

— %) ]og n(w, -+ w-’z) -

@
240+ Do,
smare 10g PI(wQ) - <“& - ;;; )w T — *) 100' Tw,y
o) + o,)
w,

\ 2 7 —
+2< + (TL Mi 1)((‘)1 + (1)3) %)}Jl’lﬂ, m'2<'d +( b+l>(01>_%k27TLJ

@y W,

\ @y
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In this expression theiwr principal values are throughout to be assigned to the
In tl 1 tl 1 values are throughout to b gned to tl
logarithms, and the numbers £ are to be such that
k= 0, unless (o, + o,) has within the region bounded by axes to — 1 and — w,, in
which case
k, = 4 1, the upper or lower sign being taken as I(w,) is positive or negative,

while:
ky = 0, unless o, lies within the region bounded by axes to — 1 and — w,, in which

case
k, = -+ 1, the upper or lower sign being taken as I{w,) 1s positive or negative.
b > te] & % o)

On reduction we now see that

1z + T L
TGt o) = exp. Lt 170),')/22(601, w,) + 2% b’
0

o1y whesy
AT (2] on) Lt : 4+ (n + %) log n(w;, + w,)

@y

2

G+ 1o, — o

(2n + 1)9& —
2w,

(o} 1
- 102 Nw, —
20, g 2

2

2 1 5 | . (2 (i -1
+< Hod Do) gy (20D ) 2A:,3m]
\ /

log nw; — log p)(w,)

W, Y W,

We must consider the three possible cases in which £, and £, do not both vanish.

w, does

(0, + ) does 1 L} lie within the region bounded by the
o, + w,) does not

(1) Firstly, when {
axes to — 1 and — w,.

ky =0
ky = +1

or negative.

In this case { } the upper or lower sign being taken as I(w,) is positive

And we have

Ty-i(z P r ! - o,
R Ly exp. Lwl {vu — 33 q T (n+ %) oLt log n(w, + w,)
: 00 v

PZ‘I (Z) Fl(z 1‘02) (o5 = 01wy

2n + 1w, — o, 1 @n+ 1o — o, 1
— LSt P e N e Yol )
o, 0g Nwy 20, g Nw;
L (41 P |
12 S;,;)_)ﬂ} Tol® - %>m1
2 \ @3 J

the upper or lower sion being taken as I(w,) 1s positive or negative.
o 2 D
But in this case m = 1, the sions being chosen in the same way.
) fos) fol
If then we take

a1 o, + o, 2n + Doy, — o,
— /. Ly*Zr TR - SR AR S .
Yoy (@), @) = %% o~ (n+ %) . log n(w, + @) + 20,0, log n,

g @t Do=0 )y oo BE DT

2w, w,
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we shall have
Dyl + o) DGElo) s 2y :
LG T o /wg)c <w2 ) e (1).

, does " .
(2) Secondly, when {(E); 1 ?:22) does} lie within the region bounded by axes to — 1
and — w,.
In this case k) = + 1,
' ky = + 1,

We shall have then the same relation

m = 0,

Ff‘,Ml(z + w]} — ]11(2)(03 i (;./-«‘Zm’m ( - 5)
(@) v (2mfe,) .
provided we take

n " '

+ 2 .2 g l 5 1
Yas(@y, @) = E E o — (n+ “)ﬁ 00 “ logn (o) + w,) 4 <N_‘F‘9;)Z:N’ ""”ailk’g T,y
2 20010y
2,
+ (2n l)) L2 og ne, F o+ 1) i
2w, : w,

the upper or lower sign being taken according as 1(w,) is positive or negative,

w, does not C .

! ]f lie within the region bounded by axes
(0 + ,) does.

— 1 and — o,, is easily seen to be impossible.

In all other cases we shall have the relation (1), provided

(8) The third case, when {

2 m,, 1 N on -+ 1 5
Yaolwy, w,) = 2 2 - —(n+ 2T oo, log n(w, + o,) + ,ﬁ,,_’___‘)mm)fiw_‘,"_lﬂ log ne,
00, =™
@Zn + Do, —o , L
+- o, * log no, (2).

Suppose now that we had investigated similarly the quotient

Pyt + o)
Uy

we should have obtained the difference equation

lj_gi(ii&) — P ( lw,l) ~9mm(.« —-;
FQ—I (Z) \/ ( 4T m])

where y,, (0, ®,) has the value D, let us say, given by equation (2), exeept in two
cases.
w, does
1Y Wher { 2
" o (w;+ w,)does not

and — oy, in which case

}lie within the region bounded by the axes to — 1

(n + ].)’T'L

551

Yo (“’u wE) D+ 2°

the upper or lower sign being taken according as I(w,) is positive or negative.
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(2)" When {Z)z (i(jes ) does} lie within the region bounded by the axes to — 1 and
wl wQ
— o,, in which case
(n + 1)771,
Vs (001, @g) = D F 2 . ;~

But the cases (1) and (2) are precisely the same, as an inspection of the figure
shows at once, excopt that I(w,) is positive when (o)) is negative, and vice versd.

X
2 ///—@l

&)HAJL/

And, similarly, the cases (2) and (1) are the same, with a similar change.

Hence the values which must bc assigned to 7yy(w), wy), in order that the equa-
tions

¥‘ -1 (v + a)l) 1‘1 (/E__(ﬂgl , — Zinare Z 1'5)
I 6 NG "

] L'+ aw) T (”/le) ¢ —tm'm (=~ é)
Lo = e )

may co-exist, are precisely the same.
We shall have then these two equations, provided

Vo (0}, 0y) = Lt D,

- . na 1 >
where D stands for 23— (n + 4) 2 te log [n (0w, + ,)]
0 0 (5104
@Lt})_caz_;ﬂ @t Doy — oy
+ 200,00, log ne, + e log na,

(the principal values of the logarithms being taken), except in two cases,

(o, does
(1) When i(wl + w,) does not

and — w,, in which case

Ya(op, ©y) = L [D + gq’i(fi_il)m]

} lie within the region bounded by the axes to — 1

(2) When { Z’g dies ) does no t} lie within the region bounded by the axes to — 1
(2]} Wy 3

-and — w,, in which case
m'(n + 1)71-{]

Va0, wp) = L’f [D + 2— ®
1

VOL. CXCVI.—A. 2 Q
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Since m or m’ always vanishes, we see, on combining these results, that in all cases

Yor (@), wy) = Lt [2 2, — (ot g) gl;;‘g) log n(w), + )
=00 1@q
En+ ) w, — o ) @n + 1w, — moom
+ 20)10)0 log 71/0)2 """ e 2&;;0)2 1()0 ’)l(})} + Z (02 "‘i‘“ ) (“/ + l) meL

. " . 1 n
= L [2‘, - Ot @ log n
p 0 0 O

o

1 \
— (n 1) N flog (w, + ) ~ log w, — 2mar!

a2

“

1
— (n 1) o {log (@, + @,) — log w, — 2m'mw}

Wy + w,y ' :
B flog (o + o) — log o, — logy} |,
But log (w, + wy) — log , — 2mae = log <1 + &—)2>
@)

ot

, /
log (@, + w,) — log @, — 2m"ir = log k1 + ;> ’
1

the principal values of the logarithms being always taken. ITence

2,1 o, + o, v
Yo (o), 0y) = - Lt [%20 07w, log n
w4+ 1 o, w4 1 w,
B “’2— 10g (\1 + w1> B o log (1 + 2>
+ 'w;(:— D2 flog (@, + o) — log o, — log wg}i}
=W

As a corollary, we see that, when n is very large,

§ 2 ! 1s infinite like ;er” log n — — lorr < L4 — >

=0 =0 /nlwl o+ mjwz Wy, w,
n [0
o 1
e 100 <] + ._>'

Wy @y

§ 24. We now determine the constant C in the expression

07zl o), o)) = Ce2 ™™ . I Kl M. > ‘“‘],

g =0y —0
by the condition assigned in § 19, that
Lt4 ( ‘w] 0)2)_- 1.
2=0
This at once gives us C = 1.
It is evident that, with the conditions of § 19, one and only one function can be
constructed, and this is the double gamma function I'y(z|e,, »,), which is such that
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Pyt (=

w»):eﬂzwm.z. fl R 1 \ .}

my =0 = 0 L\
where vy (0, ,) and y,,(o,, »,) are two constants, which we call the first and second

double gamma modular functions of the parameters w, and w,.
These constants are given by the relations

var (@1, 0y) = Lt { ! log n — s» 2’ !

7= | 010, wy =0 Gty =0 ()’2
. o flogo, + log oy = log (0, + wz)}}
4 r 72 &7 [, — -,->
You (0, ) = ‘]Iﬁtw Luzl-o ,Eo 3 ‘)wlw) 100' n o 100‘ /1 4 o

n + oy l~m7{

(1 +a / + 20,0, tlog (o + @) —log o, — log wz}} ,

where the logarithms are such that their principal values must always be taken.
And the theory is the natural extension of Lh.xt of the simple gamma function
I'/(#]®,), which is such that
o0 - » |
M7 (zle) = ez, 11 [(1 + ~'j’“>@ e
\

my =1 777/1(1)1 B

where the constant y,, is given by the relation

v (@) = Lt E BRI log ’anJ

n=m | m =110 ,

and the principal value of the logarithm must again be taken.
§ 25. We may now see at once that

P2 (w] t Wy, 0)Q> = \/(2;”/(1)2) . 6—”“”7
F2 (0-’2 ’ Wy, (1)2) == \/(277—/(01) . @*m/m.
For we have seen that

:]_(f‘iﬁ’l_) F (/" 0)7) - 2mm<i — 3)
& w2 ,

T, ~1(2) (2w

where m is either zero or unity according to the determination of § 22,

But ,,Iito [2T,(2)] = 1,
and | Lt (2T, (2| @)] = 1,
as we see immediately from the product expression for

Ty (2] ).

2qQ 2
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Hence, making z = 0, we have
|
F‘ —1] w g
2 ( l) \/(971'/(0 ’
which is one of the relations required.

We thus see that T'y(e,) is independent of e, and not only so, but its value is
substantially a quantity that appeared several times in the theory of the simple
gamma function.

Thus we saw [§ 4 cor. “ Gamma Function 7] that
n—1 )
mr, <7

q=1

> == 0 (2rfe)
that (§ 8)
"w log I, (2| w)dz = wlog /(27/w) ;
Yo

and the most general form of Stirling’s theorem was seen to be

o

log 1t (a + myw) = pinlogn — ni + n{8,% (¢ o) polog pol

- 1— {14 8 (@)} logn — log 1" («) -+ log /(27/w)

+ S)/(a 4+ )log po + 2 (=)t Sm(a + o) + Iwn

me1 M ( 77&))’”

We now see an additional reason why it was proposed to write

pi(0) = /(2nf0),

and to call v, (w) and p (o) the two simple gamma modular forms, the latter being
sometimes called the simple Stirling modular form.  We shall sce that there exist
three double gamma modular forms

Yar(@n, 0g) 5 Yas(@), 0y) and py(o), o)

of exactly analogous nature.
§ 26. We proceed now to connect the function I'y(z

w,) with Alexelewsky’s
function G(z|7), some of whose properties were investigated in “ The Genesis of the
Double Gamma Functions.”

In the first place, we take r = w,/w;, and then we have

Z L o 2\ -2, 12
G — T>::(5aw2+b2">22. — . 11 H/ 1 +*‘ e ateo s
@y my=0 my=0 O

0y
where Q = m 0, + my,,

and wherein

o = %10g27‘m’ -+ %logT“"}/T""' O("")?

9_9
inknd

b=-—710gr-;~~6

— 2D (T) .
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We also have

i?_ . 0 00, - % __Z_. ;l ‘2,2
F2“1(7) —eEtE . T T I:(l -+ é)e g+2nz],

my =20 ng =0

where a, 8, and K are suitable functions of w, and w,,
satisfies the difference equation

Geln=1"(1)G(+ 1),

7> satisfies the relation

so that on comparison of the two products we find

1) = Koo

and hence G <~z
@

S+ o) = 070 T (2]0) /().
Hence a solution of the difference equation
£+ o) = (oyf2m) . T (el ) fle) e oomse 1
is 1) = w, i (27) "~ ml(}<_~l, ) = e o 09 =500 (by § 3).
And it is evident that the coefficient of 2mm: in the last exponential may be

written ,S(z| 0, o,).
The general solution of the difference equation is

1,7 (z) X p(2]e),

is a function of z simply periodic of period w,.

Lo _
Hence )
Bu t e )~) has been seen to be an expression of the form Ke®*#, where K, a, and
B are independent of z.  We thus have
et G+ o)+ 80E+ o) — eazzz + Bz’
so that a =
3 2rme / z '
Hence ,7i(2) = Ke'» (wgz@“"”"‘)2S°<z)(2“')"°‘(} \w, T) I € 5 2
1
and since Lt [2Ty(2)] = 1, Lt -————Z—‘— = o,
e Emem Mgl
. C"lt

we have at once : : K = o,
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/2] ) . _—
Now G( — T) satisfies the equation™
o
Jeto) o)
z
()@
@1
I (_3 +%)10g-r s e .
where 7 e =¢ Vo , and the principal value of log = is to be taken.

(The same remark, of course, applies to every many-valued expression of this nature
which occurs in the course of the investigation.)
Employing the relation (1) in conjunction with this equation and the equation

et o) 1 Ele)
I,7() - \/(qu/wg)

(1)}) wlé— (277.)—1 G—-‘vam S0z | )

-2z 8,z | o)

we obtain (2

L 1
w o o T (2ar) T,

o E
0

— G?,rrn-r (Uz/;;z_.; <27T)_2( ) €~217L7\‘L (‘:1 ~]2) F(z

which reduces to

62(m~)w') m S| @) — 627’1r27 + 8z | 0) [1og w, — log @, —log 'r]’

But we have seen (§ 22) that
log wy — log w, — log 7 = 2 (m — m') @

for m — m/ = 0, unless the difference of the amplitudes of w, and w, is greater than ,

@\

in which case m — m/ = -+ 1, according as — I< )is positive or negative.

1,
We thus find » =0, and incidentally we obtain a valuable verification of our
results.
7).

the relation between the two forms of double gamma functions.

And now finally

Fg”l (z) = @, (277) - ~‘"1 ( mQ(fz"“” )”“c"‘("'> G <—j

)y

§ 27. From the relation just found we may at once express the gamma modular
constants C(r) and D(r) of the former theory in terms of y,, (o), ,) and yy (v, o,)
respectively.

For we have

22

2| A2z ® 2\ 2,2
G{— T}:eq"’iwz“’zz . oo {:<] LS eT o Y ,
T(\Cl’l [0F iy =0 my=0 + r(l) i
T
where o= log 27t -+ L log = + yr — C(7),
o
b= = log e = ()
A z\ 2,2
and also r,7(z) = ez ¥ o QI I (1 -+ 5)«, a*mw]
my=0 my=01}_

* ¢ (Genesis of the Double Gamma Functions,” § 10.
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Substituting in the relation

’

1’2-—1 (Z) == (277)“55in . (wze-—‘lmm)zso(z) . G (73:

(O]
we find
22 % 2 z A
;')’m(wu @) + 2yp (@), @) = . l("" 2m + (c)wlc% E;l ~ Y, -+ 1/) log v,
~2 ~
—_2m z D - —
m <2w1w0 20, Zah) + 0& + b

And hence equating coeflicients of z and 2* we find

Talop @) 1 — 9 b
5 = G, ¢ flog w, — 2mart} - Dot
1 . . 1 a
Yog (01, @y) = — ;— {log 27wy — 2mm} — o {log v, + 2mm} + —.
20, : 20, w,
Thus*
0 w Ty w
D(r) = — oy (0, 0,) + ;—;1 {log w, — log 7} — e j 2mar,

2
C(r) = — oyyg (o), 0y) — <% + ;:) {log wy —log 7 — 2mm} + v,
2
which are the relations required.
Since log w, — log 7 — 2mm = log &, — 2m'm,

we may evidently write these relations in the form
9 ‘ w, , Ty
D(1) = — o’ 1yy (0}, 0)) -{-; {log 0, — 2m'm} — It
// w ’
C(r) = — oyyp (o, 0;) — K% + 2*(;;> {log o, — 2m'm} + y.
§ 28. We will now show that, when the parameters o, and o, are equal, we have
yor o 0) = 3 [lgo =1~y =],
and Yar (0, @) =~ [7 — 4 —log o]
By the definition formula of yy(w), w,), we at once have

0*yy (0, 0) = — Lt [ S ! — log %a-)] .

== 00 1111—-07712_0(7711 -+ 7”0)

Group together all terms for which m, 4 m, = ¢, and we have

e+ 1 n

1
(my + my)* =1 € + (n + 1) + (n + 2)2 +o Tt (;;-Jj‘l ’

¥ ¢ (Yenesis of the Double Gamma Functions,” § 6.



304 MR. E. W, BARNES ON THE THEORY OF THE

for we may suppose that the terms are represented by the corners of the small
squares into which the positive quadrant is divided—in the new grouping we take
together all terms lying on a line equally inclined to the two axes.

7, . -
~
B \
AN \\
SN \ 8 .
N
¢ “,
non 1 2 /1 1 1
Th s '<" — S SN e _—
Ihus 0o (m, + 1Ly) GE,1<G + eg> T (n 4 1) Tty (n + n)Q
n— 1 7 - 2 n—mn
T (n + 1) + (n 4 ZT ' ZJ; n)?’
So that when n is very large
n N 1 ,72..,4 p—,
4 [_____“g o
o 0 (7711 - m2)2 ]'Oé " + 7 + +‘ ‘- (1 + ’9)

-+ terms which vanish when n becomes infinite

= log n 4y + 2 L= log 2 4 similar terms.

T 1 9 .
Hence yo1 (0, ©) = o ( log o — 7; ] ,},1 ,

which is the first relation,
In the second place we have, when o, and w, are equal,

L»l

wyg (0w, w) = Lt .

n=ow_0 0 7"/1’{"7

— - 2n log 2 — log an} ,

and by the same method of reasoning as before

ne 1 e+ 1 n n—1 o1
0%9;11—1-7722_—51 € +//z/+l+n+2+ E PP
— él +on 4 + +,l__
T e v+ 1 4
1 1 7
T {2 e R + ;‘;Jw;> - ;;}

= n4logn+vy-4log 2+ 2nlog 2 — % — n,

neglecting terms which vanish when # is infinite, and thus

1 ) N
Yoo (@, ®) =_ {y = & = log wf.
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It is an interesting piece of work to show that these results accord with those
previously obtained for the G function of parameter unity.

§ 29. We proceed now to write down the expansion of log TI'y(z) and the first few
of the derived functions y,”(z) in the vicinity of z = 0.

We have, by definition,

1
W, 0) = — 2 S % o where O = My, + M0,

)
\l,g ( iy =0 ,n)_O(f& + Q) ’

Since the series on the right-hand side is absolutely convergent, we may expand
in the form
: }
Z2

‘1‘2(2)(2)=Z§_721(“’1>“’2) 322‘ +322/# _42“ 2'+ C

b]

3.4
1.2

N

2 w1 “us D2
) (5} — = ¢ S r=z l ’
¥y (4) - 23 2 {20" O3 202 202

o

Hence, integrating,

the constant being determined by making z = o.
Thus integrating again, and determining the constant in the same manner,

1 z , 2
W E) == = ya (o wz)/ = Yo (), 03) — ot 2 6 cee
and finally,
N . ‘721 ) 7 ) & egr &
10g12(z)=_10gz_z‘)/23 ” 22 05;"‘"22 gggg - 04—1"5—-’6?) o v e

the expansion holding good within a circle of radius just less than the least value of

| m=0,1,2, ...
0

my,=20,1,2, ... ®

0 }excluded.

We note that by EisunsteiN's Theorem each coeflicient in the series is an absolutely
convergent series.

§ 30. We proceed now to the expressions for the double gamma functions as simply
intinite products of simple gamma functions.

Consider the product

: il I (z Mywy — (N, | o -2 (?) (mywy | © )_‘
P (Z) f— Fl (Z [ wl) i 1( + Qw,[w1)6 n(Nnge, | @) 2‘,‘| ) (a0, | 0 ]
T, (a0, | @,)

The typical term may be written

¢ ;i, ) Gingooy | 1) + 4‘ () gy | @) +

0 ' .
and the series 3, (m,0,|w,) are absolutely convergent when r53. The product

ity =1
1s therefore in general absolutely convergent.
VOL, CXCVL-—A, 2 R
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Again, it has no finite zeros, for its zeros would be those of TI'\(z 4 m,w,|w;) for
my=0,1, ... o. Andits poles are given by
m=0,1, ... o
my,==0, 1, ... w.

24 myw, iy vy =0 {

Thus - 9( )) has no zeros or poles in the finite part of the plane.

(/hzulge now z into z + w,, and we have

Pe+te)_ = \
b= (1, )]

X ﬁ [77%(1)4 i e" @y (1) (g0, | @) - 2o j or? =~V (%) (ingoy | o) + o ‘02«‘ .

gy =1
Now the product last written must be convergent, for all other terms of the
identity are finite for finite values of |z|, and this product is evidently of the form
e 1 where p and ¢ arve functions of o, and w, only.
Hence we must have
D (. — P/ =1{ sat +
Pz 4+ w)=P@E) " (z|loy) et

Now we have proved that

Iy (z 4 w) =1y () 17 (2

@y
e r,
Thus if we put F2) = ,1:<E2)))
we shall have /V(E/%%)wl) — gt A
and similarly we shall have
/(ﬂ + w’) — eaﬂ:*l Bo
S () '
Hence f(z) is a doubly periodic function of the third kind, with no finite zeros or

poles.
Thus we must have
f('g) — UC’ At x ]3:5
for in HerMiTE's expression of such a function the o functions are each associated
with a finite non-congruent zevo.®
To determine C we put z = 0, and obtain
Ly() .
C'—'L[1 () "‘”.l,.
ol 1Y (’ |@))
Differentiating logarithmically, the identity
A B:
(2|0, w) = P(z) ¢ ,

* ForsyTit,  Theory of Functions,” § 142,
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we find on making z = 0,

' 1
— Y (0, 0,) = B+ w1 (log @, — ),
and therefore B = — vy, (0, 0,) + v log o
oy @y

Differentiating again, we have

U220, 0) = 2A + ¥ (2] 0)) + §1[4‘J.(2)(z + mowy | @) — P (M0, | @))].

g =

Again, making z = 0, we find
— yar (01, 0y) = 24,
or A== Fyn (o, o).

Finally, then, we have

_ve? L e — Y
L — 2 Yy b Jogey — L
Do(zlwy, @) =¢ = 7 om0 X T (z|0)
b P1 (Z + Ty, l (l)]_) = 2y (1) (igey | @) — ,2 Wy () (04 | @)
X H "«":'—‘_—'T*"‘ [ “ J.
=1L 1) (myw, | @)

This formula is equivalent to the one obtained in the “ Genesis of the Double
Famma Functions,” § 2.

It is an interesting verification to actually transform the one formula into the
other, making use of the relations established between y, (@), 0,), yoo o), 0,), C(7)
and D(7).

On account of the symmetry of the present functions, the formula corresponding
to that given in § 8 of the “ Genesis of the Double Gamma Functions” may be
written

FQ (zlwl, wg) — e_')'zrz?- '—?J{’Yzz+;];10g’wz‘~:’l;} . F1<Z

“’2)

X fi. [Fl (Z + My, I Clz'_g) = 2 (1) (imo | wg) — ﬁ; W1 ) (e | wz)]
my =1 1_‘1 (?n'lw.l l w2>

The product formulee just obtained correspond to the expression of the o function
as an infinite product of circular functions.

Such a circumstance, of course, at once prompts us to try and find a formula
corresponding to the expression of the o function as a sum of exponential functions.
But it is readily seen that such is an impossibility. We cannot express the double
gamma function as a sum of an infinite series of simple gamma functions of varying
arguments.

It is this fact, combined with the absence or any quasi-addition theorem for the
double gamma functions, which precludes the possibility of any collection of formulee
rivalling in number and elegance those of the doubly periodic functions.

2RrR2
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§ 31. We proceed now to express WEIERsTRASSY elliptic functions in terms of double
gamma functions.
In WeirrsTRASSY notation of elliptic functions we have
P(@)= —23 35—
( ) 'll zﬂz(/ + Q)r{’

where O = mw, 4 myw,, and o, and o, are the periods of ¢(2).
Now by definition

® 1
'7b2(3) (z]wlﬁ “’2) 2”1%0 mzz 0( + Q);

Representing the various terms by the corners of the parallelograms of the figure,
we readily see that

P, ® (z’wla wy) + ,® (zf — o, @) + Y — @) + P,? (;‘ — )
1 ® 1 1
=- 2[23« T I T e

@,
[ SN S S/

77

Hence, using the natural summation 24, (2| 4= w,, 4 w,) to express the left-hand
side of this relation, we have

s (2] £ @), & @) = ¢'(2) + S, (z

and therefore, on integration,

)+ 297 (2

1
#(2) = Zy® (2 + @) = S (2] £ o)) — 3P (/ e
where » is constant with respect to z.
Evidently
v=Sya(Eon £o) + 2 2( 7) +e 2(71(01
Now
= Tt] -1 [log log log 1 (@, -} )]-—-Z 3 L
')/Q-l (0)!, (,()2) — “, ;thwlwﬂ [ Ob nw} + Og 77/(1)] O w] () (G5 e 7)11H0<7771(4)1 + 7”10)))0 ’

where the principal values of the logarithms are to be taken.
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And hence
R | 1 log (@, 4+ ;) + log[ — (@, + ,)]
p=Le| -3 3 g AT el eIt et
W= 1y = =0 Ay = - !)' + wlw:] - 1Og ((x)]‘ - (IJ2) - log[— (wl - w?)]
Now, as may be readily seen by examining the different possible cases in a
diagram,
log (@, + @) + log[— (0, + ;)] — log (e, — @,) — log[— (0, — wy)]
= 2 log-

w; + o,

b
W) o Wy

where that value of w,-»w, is to be taken which is on the same side of the real
axis as o, + w,
With this proviso,

| 1 2 o + o,
v=—73 3 = log —+—2
—n OF + 00, © 0w 0,

the infinities in the double summation being equal in ahsolute magnitude.
§ 32. We may now express WRIERSTRASS { function in terms of derivatives of

simple and double gamma functions. For on integrating the relation obtained in the
previous paragraph we find,

remembering that (%g(z) = — p(2),*
| , . 1
— () =3 4 0) =30 (2] @) = SV (] kwy) — C + o,

where p is constant with respect to z.
Making then z = 0, we find

0= — Syp(t o, + 0y) — = {10“(“’1) -y} + ——log(-—- ») ~ vy}

- ;;;{bgwg -7+ ;;3 {log (= @) =7} + p.
Now by § 23,

< : ) + o, {10g (0, + 0y) — log o, — log w, }
el on 0 =00, 1t = (014 0)] + log (— 0) + log (— )
W) — {log (wy — @) — log (— w,) — log o, }
2oy | — log (0, — ;) + log o, + 109'(- )
1

= ( & F g Ji1og (01 + 0) = log[—(0, + 0

{1og(—- o) —log o} + = floo(- w,) ~ log w,}

1 1
- {561 - é;;}{log (03 — @) — log (w, — w,)}.

¥ JorpaN, ¢ Cours d’Analyse,” 2nd edition, p. 347. Note that JORDAN uses 2v; and 2w, instead of
wy and e of this paper.
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‘ 11
Hence b= (o ){10g (1 + @) — log [ — (w, + )]}
1 40
11
- {E’-&; - 2;:} tlog (0, — @) — log (&, — w,)}.
Now log (0, + w,) — log | — (0, + w,)] = &+ =,

according as I(w, + w,) is positive or negative, and

log (wy—,) — log (&, —,) = F m,
according as I(w,—w,) is positive or negative. Therefore the values of u are given
in the following table :—

|
! I (0w + o I (014 oy
1 . = .
positive. negative,
I{w; — ws) L, T —_— T
positive » o wy
Lon — 02) po= .
negative : @, o
i

In other words,
if ()| >|Hwy)], p = % 7/w, the upper or lower sign being taken according as
I(w,) is positive or negative, and
ift [T(wp)| > Lo))], p = & mt/wy, the upper or lower sign being taken according

as I(w,) is positive or negative.

§ 33. The expression for o (z) in terms of mmple and double gamma functions is
now immediate.
For on integrating the result of the previous paragraph

—logo(z) =p+ pz+ - -; — logz + Slog Ty(z| 4 o), +w,) — SlogI'(z]| +w))
— 3 log I' (2| Fo,),

p being the constant of integration.
Make now z = 0, and we at once see that p = 0.

Ty (2] + o), T w,)
THD TNz £ )TN ] 4+ w,y)

™0

Hence o(z) = e -

and in this expression

‘w1 2 w; + o,
v=— 33~ log =42
e P + ©,, g(olvja)2 ’

the infinities in the double summation being equal in absolute magnitude, and that
value of @, «~ o, being taken which is on the same side of the real axis as w, + w,;
while
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. ™. - - . .
w= + o if | (w))]> | l(w,)], the upper or lower sign being taken accord-
ing as 1(w,) 1s positive or negative,
g 1) 18] g
. EE . .
andpu = + — if | I(w,) | > |1(w,)], the upper or lower sign being taken accord-
®,

ing as I(w,) is positive or negative.

§ 34. By means ot the preceding paragraphs we may now at once prove
WrIERSTRASS' relation™

Wy — oy = 3= 2m,
. . . + [w) . .- .
the upper or lower sign being taken according as 1 <;1) is positive or negative,

where 5, and 7, are determined by the relations

i+ o)=L+
Lo+ @) = L) + 7

Take the expression for {(z) given in § 32, and we find by use of the formulz
of § 22 that

2
{(2) =Lz + o) = {f (m — ) — my + my) + vo,,
where

o, does

my = 0, unless } lie within the region bounded by axes from

w; — o, does not

the origin to — 1 and w,, in which case m, = 4 1, according as — 1(w,) is positive
or negative, and m, and mg are obtained by changing the signs of (i) both e, and
w, and (ii) o, respectively in this formula.

§

1 2 w0, + o, Dare N
Thus M=y e Folog DT Ty oy ],
, —w L w0, W, - 0, W W,y ~
the infinities in the double summation being equal in absolute magnitude, and that
value of o, - w, being taken which is on the same side of the real axis as (o, + ,).
And, similarly,

{(e+ 0)) — L) = 72

N ., 1 2 0y + o, 27t , , , ,
where 2 =33 — log 2 —m m My — m
: @9 e O e, P o - o, + 0’1“’2[ oy #1

where m’ has its usual meaning, and m,” 1s obtained from m’ just as is m, from m.

. s 2 - ,
Hence Z‘] — ;’-i = w:;b» [—(m—m) 4+ (m —m)) + (mg, —my) — (my — my)].

* Jorpay, ‘Cours d’Analyse,” p. 351; Forsyry, <Theory of Functions,” § 129, Again notice that
each of the quantitics » and o is double that usually taken.
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But we have seen in § 22 that, if the difference of amplitudes of o, and o, be
greater than ,
/ -
m—m = - 1,
. . . o . - .
the upper or lower sign being taken according as [( -1} is positive or negative.
\®2/

Similarly it may be proved that if the difference of amplitude of o, and — w,
s >,

" = 4 1. sccordir .<]‘“/“’2\m v O] ——
m, —m, = 4 1, according as (;) 18 e or —wve.
ad |

And e e o 0 —o and o, 18 >

. 1[5 .
My —my =41 . . . . l<—l) 18 +ve or —oe ;

@y,
while, finally, e e o — o and — wyls >
) = 1 B AR e
My — Ny = e o) “+wve or —we.
1

In all other cases the differences between corresponding m’s vanish.
But the difference of amplitude of one, and of only one, pair of the set

Wy, Wy W), == Wy == W), Wy —= ©), ~—0,
can be greater than .
Hence — (m —m') + (my, — m)) + (my — my) — (my — my)

must always equal 4 1.

And it is easy to see, by taking the particular cases which can arise, that the
upper or lower sign must be taken according as 1(w,/w)) is positive or negative.

We have then finally

m Ny 2are
o, w, T o,
and therefore N, — N, = + 2,

. . . L ™5\ . PN .
the upper or lower sign being taken according as L(-2) is positive or negative.
S o o)) -
§ 85, For brevity, we merely indicate the relation of the formulwe which we have
found to the known relations :

oc(z+ w)=— em(H%)U*(Z)

ozt w)=—¢c" (+%) 4 (2).

By § 33
I Iy (2 + o] Foy, 4 0,)
(2 + w)) . e—Mwl*szﬂ;“Pﬁ 2+ oy ae Uy ¢l & o), & o) .
o (2) Tz I PylE + o] £ o) n Iz + o] + o)’

P e+ o) - TG

T @,)
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and by the previous paragraph, the expression on the right-hand side of this relation
will evidently reduce to the form e™**%, where 6, is some constant whose value may
be readily seen to be given by
— 3 1 1 A
8 — dme = — pn+m ('m — mg) (\c: 4+ > + m(my — m,) (; - —) .
1 / :

1
(0J} W,

This value simplifies on detailed consideration.
When [I(w))] > [I(w;)], A
8 — 3me, = Fm,
according as I(w,) is positive or negative.

When |I(w,)| > |I(w,)|, there are four subsidiary possibilities ;—

() When o, lies within the axes to — 1 and — ,,

(B) 3 Wy, I 55 — 1 and (OFN
(’)') 5 T Wy, 55 55 — 1 and — Wy,
and (8) X —_ W ., 9 T -1 and w,.

In cases («) and (8) 8, — 49, o, = 4 7w, the upper or lower sign being taken
according as I(w,) is positive or negative; and in cases (8) and (y) the upper and
lower signs are interchanged.

We thus see that in all cases

L. - Inw;
el = —¢ i‘fll"’z,

so that we have the required equation

o (24 o) = —entring(y),

Similarly we find o (24 wy) = — enEtid g (g),

The verification of these results affords substantial proof of the general correctness
of the signs which are involved in the work.

§ 36. It is interesting finally to notice that just as the gamma functions do not
exist when r = w,/w, is real and negative, so the elliptic functions demand that =
shall not be real.

The condition that = must not be real and negative arose explicitly at several
stages, and might have been predicted d priors.

For, when w,/w, is real and negative, it is obvious that

Q = mo; + myw, {ml =01, .., O}excluded.
my,= 0,1, . o 0

will have a zero value at least once.
And thus the function
ff ., ® ® r ~ 2z %7
1_‘_1 — 2721+~‘Yn. ) , L :> gt
? (Z) ¢ ¢ mEO 1)12]]:0 1 + 0] ¢ _l
will be infinite independently of z ; that is to say, it ceases to exist.
VOL, CXCVT,—A. : 2 s
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For all other values of ®, and w, the function I,~!

w,) exists. But the
product

Ny (2] £ @), & o),
and consequently o (z), will not exist when either w,/0, or — w,/w, is real and
negative ; that is, when 7 is real. The criterion for the existence of multiple gamma
functions (n-ple where 7 is greater than 2) is more intricate, and, as we know,
n-ply periodic functions (n > 2) do not exist.*

Parr IIL

Contour Integrals connected with the Double Gamma Function. The Double
Riemann Zeta Function.

§ 37. In the theory of the simple gamma function it was shown that the interven-
tion of a definite integral, coupled with the theory of asymptotic approximations, it
was possible to obtain contour and line integrals to express EULER'S constant y, and
the logarithm of the simple gamma function and its derivatives. We now proceed
to show that it is possible to extend the method thus previously employed so as to
obtain expressions as contour and line integrals for the gamma modular constants
yar and y,,, and the logarithm of the double function and its derivatives. It will be
noticed that when the real parts of o, and w, are positive, the numbers m and m’
which intervened in Part I1. vanish, and there is consequently a noteworthy simplifi-
cation of the formule obtained. =~ This simplification extends also to the definite
integral expressions, and consequently we shall first investigate the theory in this
simple case, proceeding subsequently to contour integrals of greater complexity.
Finally we make use of an extension of MrLriN's method of defining the simple
{ function by a series instead of a contour integral, and we show that there is
complete agreement between the formulwe obtained in the different ways.

§ 38. When the real parts of o, and w, are positive, and when in addition the re&l
part of « is positive, we define the double Riemann { function

G (s aloy, o)
for all values, real or complex of s, by the integral

£ — s){ (=) )
2 (1 — ey (1 — e=os)

wherein (—2)*~' = ¢¢ P59 Jog (—z) being real when z is negative and being
rendered uniform by a cut along the positive direction of the real axis. The
integral is to be taken along a contour enclosing the origin (but no other pole of the

% The existence-criteria for functions which are substantially multiple gamma functions have been
discussed by CrANT, ¢ Batt. Gior.,” vol. 29.
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subject of integration), and the positive half' of the real axis; and extending from
+ o to 4 o as in the figure.

Under the limitations specified the integral is, in general, finite. Moreover, by a
theorem previously obtained,* we have under such limitations
1

(@ + Mo, + 00,

(1 =)

—_ s=—1 e~ (@ + mywy + nymy)z CZZ —
2 f ( )

the latter expression having its principal value.
And therefore

proqn 1

p>

=0 my=0 (& + M@y + w0,
(1 —s)
= 2 { 1 — ¢—w ' 1 — v
A=
(1 —emor) (1 — ¢v¥)
o= [a+p 4+ Doy + 0+ Dogle

(L — 5) fem 020 Do tabis ote
+ 27 ," (1 — g’*wﬂ) (1 . 6""’22) ("" ~) ldd,

1 —e (pr + 1) w5 1 — e—(q‘n + 1) o,z

G—az(__ Z) s—ldz

all the integrals being taken along the fundamental contour.

When # is a large positive integer, we proceed to throw the two integrals last
written into the form of asymptotic series.

For this purpose consider the expansion obtained in § 16, which may be written

Ze—-(tc+w1)z 1

e (@ + o)),
(I —cof)(1 —e ) w02

— (e + o) +* I At

(=)=1L,8% (e + o))

-+ i A SR
We showed that this expahsion is valid provided |z| was less than the smaller of
. ! 2
the two quantities l Zmt ) lbl,
@y Wy |

Outside this circle the series diverges. But within the region bounded by lines
going to infinity from the poles of
ze-«(a+m,)z 1

(1 — o) (1 — o)

)
wlwﬁz

* “Theory of the Gamma Function,” §§ 22, 33 and 34.
282
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the series will, in the language of M. Borgr,* be summable, that is to say, within

. . . . . . . . . 2
this region (which 1s conveniently bounded by straight lines from the points 4+~
@y

:}:{{—L which pass to infinity through the remaining poles) it is possible from the

values of terms of the series at any point to obtain, by the employment of
intermediate functions, a magnitude, independent of these particular intermediate
functions, which is the value of the function at the point.
If then on any term a,2" of such a series we perform the operation which is
expressed by
A1 =)

o [a,,z" (— 2)*de,

we shall expect to obtain a quantity which is the n-th term of a possibly, and even
probably, divergent sequence, which in turn is, by suitable operations, summable to
the value which results from the performance of the fundamental operation on the
function of which the original series is the expression.

Such considerations being understood to underlie the operations, we have

-LF (1 _ s)l‘ e~ [P + D, + alz +e- [g(ie + 1w, 4;(:] (—- 2)3—1612
(1 = ey (1 — g=o%) ’

Qar

— J(1 = s)'((_ 28

[e—]mwlz + e—qnmzz:l CZZ
2ar »,0,

4= [(= 2y {9‘+~ e %}OZZ

2ar 20,0, 0,0,
J(1 —s)s’ ) o, + 0w, | & — w, _
MR WU A —_— 3—26“@“’2‘? bt SR 4 e (’ZZ
+ 2 ( ) { 20,0, + ®0,
J(1 +5) 7 — g)mts=2 - "
+ H0E0 S [EDET S (0 o) e 4 S (0 + o) ergds
- m= .

o 1 { 1 L1 } I o+ o, + im{ 1 T 1 77‘1
T =1 (= 2) w0, [(prw)? T (gne,)s—? s—1 20,0, (prw,)*1 (gnwz)i‘lj

1 1 1 1 1
il oy
o1 S-G+FL) Lo (8 +m—2) {gS’m(a + o)

( inl)nﬁ'3~1

‘2S’m(a + wz)l
(gnwg)mﬂ*s—l J °

Now it may be readily deduced from the results obtained in Part I., that
S (@) = m[Su_i{¢ + o) + ,B.]

+ 3 (=)

=1 1.2...m

o

7

* Borer, ¢ Liouville 5 Sér., vol. 2, pp. 103 ¢f seg. * Annales de Ecole Normale Supérieure,” 3 Sér.,
vol. 6, pp. 1 ¢f seq.
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Hence we have

L_ij(lf_ 8) J‘e—[(pn-kl)mﬁra]z + oL+ Do, +alz Ne=1.7,
- 2 (1 — eor) (1 — ¢TwR) ( 4) dz
. 1 | 1 4+ 1 } + 1 2(L+a)1+w.2{ 1 B
T =1D)6= e, [(pre) T (gre,) s—1° )0, (e
IR { 1 1 St e) 8@+ 0]
(o] T s — 1 Loy (et T wggnasyt (poy) (qnoy |
+ 2 (_)m—l s+ m — 1) {gSm(a + Col) + gBm+1 + QSHL ((L + (02) + gBm-u}
i m y (pn wl)m+s (gnmﬁ)mﬂ

In an exactly similar manner we find, since

QSmI (d + (O] -+ (1)2) = m[gsm-l(a -+ ®; + 0’2) + gBm]a
that ’
I (1 — 5)4( o= lat @it Do+ (gi+ Doyl
(i = =) (1 = o=

_ 1 1 _ 204 o) + o 1
T =16 = Do, " (preg + grey)y (s = 1200, * (pro, + gno,)

— 2y ldz

2

WSV + 0y + 0) | % —y <s + m =1\ Sp(e + 0; + @,) + 3Buyy

(pnew, + qnw,) +,,El< mn (pro, + qnw,)

If now we group together all the results which have been obtained, we find the
asymptotic quality, true for all values of s, and for values of «, w,, and o,, whose real
parts are positive,

pn

>

1

=0 ((L + myw, + 7)120)2)5 == gg (S’ a l W, 0)2)

m;=0 %

s

1 1 1 1
T s —'"1"><s2""§>"a&{w;{<pnasl"+ a2 (pna)? (qnwz)s—ﬁ}
20 + 0, + o, 1 1 1
T2+ 1>w1w;{<pnw1 + graogy ™t T (prey)yt <qnw2>s-1}

1 { 1 + 1 }
s = ooyt T agne,) !
S+ o+ o) S0+ o)  58/(a+ wy)

(pno, + gno,) (pnw,) (gne,)
3 <m +s— 1\{ern(a + oy + @) + 3By oSu(® + @) +3Bnyy
me1l pmts m / (2""1 + qw2)7n+3 . (pwl).ﬁ-m

— (e + wy) + 2BM+1} o (A)

((sz)m-{—s
It may readily be seen, just as for the case of a single parameter, that the series
. N . . .
proceeding by powers of ,, 18 & series of powers of a real variable, whose line of con-

vergency is of zero length.
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This series is summable by an almost evident modification of the application of
Borer’s ideas, which was employed in the “Theory of the Gamma Function,” § 38.
Tt 1s thus the asymptotic equivalent of the sum

piv g 1

iy =0 g0 (@ A My @7 + Mgw,)’

and it satisfies POINCARE'S® criterion for asymptotic equality that the difference
between this sum and the first m terms of the series has its absolute value less than

a quantity of order

77’m+s~2'

§ 89. The function {y(s, @|®,, ®,) has been defined, and the asymptotic equality (A)
has been deduced only for the case in which the real parts of @, ), and w, are all
positive.

It is natural to try and use the equality to define the function for all values of
@, @), and w,. ‘.

In the first place, it is evident that when #}(o,) and ¥}(w,) are both positive, the
equality (A) holds for all values of «, for the various terms of the sum and the equiva-
lent asymptotic series are continuous for all but an enumerable number of values of
d, o, and o,, Hence in this case {(s, a|w), 0,) may be defined as the term inde-
pendent of n in the equality.

So also when s is a real positive or negative integer, the equality will hold for all
values of «, o, and o,

But when s is not an integer, the various terms involving s in their index are
multiform functions, and to ensure uniformity we have to assign definite cross-cuts
to the logarithms which arise in the equivalent exponentials. When, as under the
limitations for which the equality (A) has been established, these cross-cuts are
formed by a line outside the smaller angle between the axes of o, and w,, the expan-
sion is perfectly valid ; but when the common cross-cut lies within this angle, terms
arise similar to those which occurred in Part 1L of this paper, which are multiples of
2, and involve 7.

~ g
"

A

Cross-cut U

o]
_Lross ~c@ o

©, &

2

And, therefore, if we attempted in this case (see the second figure) to define

(s, @] @, ;) as the absolute term in an asymptotic equality such as (A) § 38, where
for complex values of s the principal value of each term is taken, we should ultimately

* POINCARE, ¢ Acta Mathematica, vol. 8, pp. 295-344; ¢ Mécanique Céleste,’ vol. 2, pp. 12-14,
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find that {y(s, @|e, w,) as so defined would involve n. In other words, we should
have made an assumption which could not be justified.

If we wish to obtain an expansion valid for all values of w, and w,, we must con-
sider as our starting point the integral

JI(— 9)!‘ e (— 2y Mz )
27  JL(1 — emor) (1—eo¥) ’

where (— z)' 7! = ¢~ "7 the logarithm being rendered uniform by a cut along

an axis L, coinciding with the bisector of the smaller angle between the axes of L
@,

and ~o— and where the integral is taken along a contour having this axis L for axis

(as in the figure), and enclosing the origin, but no other possible pole of the subject
of integration. That value of log (— 2) is to be taken which is such that the i 1mag1n—

ary part of the initial value of log (— L) lies between 0 and — 27..

@,

This integral of course is only valid when « lies between the smaller area bounded
by the axes of o, and ,, or, as we may say, when @ is positive with respect to w,
and w,, We notice that the line L is uniquely defined, since the ratio wy/w, cannot
be real and negative. The definition of the integral is not complete when w, and w,
include and are equally inclined to the axis of — 1; in this case we may take L to
be a line nearly coinciding with this axis.

We now define the double Riemann { function, when the variable a is positive
with respect to the ’s, and s, »,, and w, have any complex values, by means of the
equality

—ar( _ aye-1
Zg (8, a [ Wy, (UQ) = l:’(27’r - ) Mo j.L(lie—(‘"lz) (~1)__eiiiz) s
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where M = 0, unless the axes of 1i and (o, + o,) include the axis of — 1, in
which case

M = F 1, the upper or lower sign being taken as I(w, + w,) is positive or
negative.

§ 40. Let us take now the integral which has just been defined, and apply to it
the procedure of § 38.
We shall evidently have to consider integrals of the type

(1 —s)

o ILe""”(w- z) "z,

where the axis of n lies within the smaller angle between the axes of w, and w,. We
can at once see that this integral

_Ja-

S) 2;19117,.[ —az s=1
e (= 2}z
o 1 (—7) 2

1 . . .
where p = 0, unless the axes of L and b embrace the axis of — 1, in which case

p = -+ 1, the upper or lower sign being taken as I(n) is positive or negative.

Let n = 7e?, w, = ae, w, = bef, where 0, « and 8 are measured between 0 and
27 by rotation in the positive direction from the positive half of the real axis. The
axis of L proceeds from the origin to the point ¢7#“*# and therefore where z is at a

distance p along the axis of L,

nz-—r,oe("“*i"3

This quantity has its real part positive when
+B

mw
_—§<0_ -

b0 |+
L\?l\’
-

-a relation which is satisfied when 6 lies between a and B, and the difference between
a and B 1s less than 7. It is also satisfied when the axis of L proceeds from the origin

to the point e (*3f+<); where ¢ is a quantity less than half the excess of = over
a - . We see then that the axis of »1— lies within a range of a right angle on

either side of the axis of L. Hence by the propositions previously proved [ Theory
of the Gamma Function,” §§ 33, 34],

Fl—S I'(1 — s az 81
LO=I o (—mde = LI e (= oy




DOUBLE GAMMA FUNCTION. 321

unless the axes of L and embrace the negative half of the real axis. In this latter
case, since the imaginary part of the initial value of log (— L) lies between 0 and
— 2, as also does that of log < — ;), we are giving a different prescription to the

many-valued function which occurs in the subject of integration.
We therefore have

LF(l —_ 8) [L ( 4)9 l(,l’/ — ‘F(ld ) Z[LSTTLJ‘—};«@—’I’LZ(_ z)s—ldz

27r

where u has the values which have been assigned to it.

Now I (14:‘?)!’__ e (=2 2y lde = e'® (- )

the logarithm having its principal value (‘‘ Theory of the Gamma Function,” p. 107).

Hence l’F__(l:i) ‘.Le—-nz( — Z)s—ldz — e—sllogn + ZM'm.]’

, 1 . L ,
where p” = 0, unless » and i embrace the axis of -- 1, in which case ' = 4 1, the

\

upper or lower sign being taken as I< ) is positive or negative.

Finally then

L

I (1 :_8_),[ -z ~)s—1 —_— }__
o (=R T =

where the latter function = e™*'*¢", where log 7 has a cross-cut along the axis of

-1 and is real when n is real and positive. In other words, log » has its principal

value with respect to the axis of — }—J
§ 41. If now we apply to the integral
I (1 — s)[ e (— 2)
2 L1 - e”‘*’lz)(l —e ‘*’22)

the procedure of § 38, we shall, for all values of s, ¢, o, and o,, such that a is positive
with respect to the o’s, obtain the asymptotic equality

Ly g 1 ' =) J’ e (— 2)1dz
om0 meo (@ + Moy + mgwy) 2 L —em#) (1 —eux)

1 A LI 1 1
+ w? (s — 1) (s — 2) 0’1“’2{(]’0’1 +ogoy T (pw) - (9("2)3_2}
20 + @, + o, 1 1 1
2(3 —1) ("10’0{(27”0)1 + Q”‘%) E (P”w1)"_l - (97“’2)’—1}
[oVER]

VOL. CXCVI.—A. 2 T
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- { g LI + 2500+ o+ wy) S (et ) (e + @)
s — 11w (pne)™ " wy(guw,) | (prw, + grwyy (prw.y (gnw,)*
4+ s (= s = I BBl + @yt o) + 5By 8o + o) + 5B,
mll et s it (Z)wl + ng)m +s (j)wl)mi*o‘
- qu’m (U‘ + 0)33) -+ QBM +1 1,
(ng>m+3

wherein all the many-valued functions with s as index have their principal values
. . 1 . . .
with respect to the axis of — i It proves convenient to consider these functions as

having their principal value with respect to the axis of - (w, + ®,). In order that
this may be the case, we must multiply the integral by

o2Msrd

- 1. . . . .
where, as in § 89, p = 0, unless (w, + o,) and i mcludes the axis of — 1, in which

case M = 4+ 1, as I(w, + o,) is negative or positive.

Remembering the definition of (s, ¢|w,, o,) given at the end of § 39, we see that
~we obtain for our fundamental asymptotic equality an expression which in form is
identical with (A) § 38, but in which the many-valued functions with s as index have
their principal values with respect to the axis of — (w0, + w,). It is evident that
the equality will hold for all values of «, and will thus serve to define {y(s, a|w,, wy)
for all values of s, @, 0, and o,

§ 42. We proceed now to take such particular cases of the general asymptotic
equality which has just been obtained as lead to expressions for the logarithm of the
double gamma function and its derivatives.

Suppose that s is a positive integer greater than 2; then, making u infinite in the
general asymptotic equality, we see that

(=Y &
bo(s, o]0, 0) = (s — 1) e o, w),
where © -
P (0| ), wy) = du log Uy(ar| ), o).

This relation is true for all values of ¢, o, and w,; 1t is the first of a series
connecting the double zeta and double gamma functions.

Let us next put s + e for s, where ¢ is a small real quantity and s is, as before, a
positive integer greater than 2. Then, provided ¢ is positive with respect to

and oy,

9 j— i‘kl-—«‘;:f,), ,2Mm (s €) s e“‘az(___ z>8_1+ dz
Lis + e alo, 0), = Dar ¢ JLA(1 = gme) (1 — 7o)

the integral being taken along the L-contour, and M being the integer defined at the
end of § 39.
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Hence if log (-~ z) is real when z is negative, and is rendered uniform by a cut
along the positive direction of the axis L,

L(s -+ alo, 0)
- Z:- E:—)nlt elj d‘(te—a:g; (iéhw;:u){ Foret .o ](
X {]4-—e<-'11-+ o s]:i> — }{1 +elog(—2)+ ... }
X {1 +oMmet b
for T(e—s-41) = —Ck

e—s+D(e—s+2) ... (—1)

—~=-(8<:1);,1C{1—ye+ o } {1 +<—:(\T+ o +Sil>+ . }

Now when s is an integer greater than 2
- o) 3

[ ety
VL (]. — “’15) (] — 6—"’22)

= 0,

for the integral may be reduced to two line integrals which destroy one another,
and an integral round a small circle enclosing the origin whose value is zero.
We have then, on making ¢ = 0, -

1 1

(=1 e”(—zy  —log(—2)+ 2Mme + = + . ..+ —= — v

Us, |, wy) = 27r (g o 1) { © _ 1 _ s—1 }
(1 — e o) (1 — e7v#)

But, when s is an integer greater than 2,

—az( — ~)s—1 [ A _1,‘ VA%_,_
Sc (—ey Mk «y}d
L

T =oon) (1= oo ‘

vanishes for the reason just assigned.
We see, then, that when a is positive with respect to o, and w, and s is a positive
integer greater than 2,

st 1 e~ (— 2y~ 1log (— 2)
Lo, U" ), 0y) = ("'") 9r (s — 1)! .[L (I— o) (1 — o)

and therefore under the same conditions,

% L[ (= ey log (=)
‘l&m(“ ‘ Wy, ‘”2) = 9 {L (1 — e=o) (1 — e=os) dz.

~ § 43. Put now in this result s = 3 ; then with the assigned limitations

¢ e~ (— 2)?log (— 2)
Py @ (] 0, @) = 5 gL (1= o) (1 — o) dz,

2T 2
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and it is obvious that we may replace log (— z) in the subject of integration hy
log (—z) 4 y without altering the value of the integral. Integrate successively
with respect to @, and we obtain

N eCE N E I
L

log Iy(a] ), @) =, (= oyl — vy T2 (L a),

where the coefficients of the additive quadratic form are constants with respect to a.
Remember that

Lt[aly (a0, w)] =1,
a=0
then we evidently have

¢ [ e (—z2)Ylog(—2)+ v}
Iog F'Z(O{’ l @y, O)Q) = om J‘L (1 _.g—w;)(l — g7 er)

i__"_ em(— 2y "Hlog (— z)+ o}
_a:[:to[%r fL (L— ey (1 —¢os) + log a} .

dz + Ma + \a?

We now define the third double gamma modular form py(e;, »,) by the relation
log py(@), 0y) = — 2Mm S, (0] 0}, 0y)
o (=& log (=2 +y
- Lt [_JL ! dz - log O&] ,

a=0 27 (1 e 0"“’13)(1 — (}_“’2"4>

and we proceed to show that the constants A, and \, are such that

log Lelopey) So(a) (M 4+ m 4 m')2m + S, (0)2Mame

Pz(‘ov ®;3)

o [ e (=) Ylog (— 2) +v}
+ D fL (1—e=o) (1 —¢ox) OZZ,

where the numbers m and m’ have the values assigned in Part II.
If this relation is true we shall have

(= (=) 4]
1 gmos -

Iy Y a+ w) , ¢
log =4 Sy == S(a]0d) (M +m 4 m)2me ot 5 - Ir

§ 44. Let us now consider this integral.

It is to be taken along a contour embracing the axis L, which we take to be the

. .1 1 .
bisector of the smaller angle between the axes of — and = unless such bisector
@y p)

should be the axis of — 1, in which case we take it to be nearly coincident with this

line. And in the subject of integration that value of log (— 2) is to be taken which

is real when 2z is real and negative, and is limited by a cross-cut along the axis of L.
Let us consider the relation of this integral to the integral

(2 log (— 9 + )
[ ! (1 —eww) dz,

wg

20

which is defined in the same way with reference to the axis of 1/w,,
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We broceed to show that

12 L .,
(o= [ =2 (o)

where u’ = 0, unless the axes L and 1/w, do not enclose the axis of — 1, in which
case

p' = -4 1, according as I(w,) is positive or negative.
For take the integral along the contour embracing the axis L, and suppose the
contour to expand so that it embraces also the axis of 1/w,.

Then since @ is positive with respect to o, and w,, and since the angle between
the axes of L and 1/w, is less than =, the value of the integral will be unaltered,
for its value along the part of the great circle at infinity between the axes of L and
1/w, is zero.

Suppose now that the contour is taken to lie on the infinite-sheeted Neumann
sphere, whose sheets intersect in the cross-cut from 0 to oo, on which the subject of
integration of the integral is uniform. We may, without altering the value of the
integral, deform the cross-cut so as to take up a position along the axis of 1/w,,
instead of along the axis L, provided that in doing so we do not give a new specifica-
tion to the logarithm. The latter phenomenon will occur when 1/, and L embrace
the axis of — 1, in which case we take the first contour in a sheet in which 2z can
assume real values, while the second is taken in one in which log (— z) for real
negative values of .z is equal to 4 2.

After deformation of the cross-cut we may compress the contour so that it
embraces the axis of 1/w, It is easy to see by this repetition of the argument
previously employed in the “Theory of the Gamma Function,” that we have

. J» e——az(_z)"l {10g("' Z) + 'Y} dz
L

1 — ¢go2

[ {log (= #) + 2/me + 0}
s .

271' ";é ]. — T 9F
¢ [ em®(=2) {log (= 2) + 7} o
::2;[;2 e dz — 2p'm S| (o] wy),

where p’ has the value previously given.
§ 45. The assumption made in § 43 for the values of the constants \; and \, will
therefore lead to the relation
Iyl (e + o) T'(e|wy) , ,
log —"sz:@%" = log :,1(6102)2 S (a]wy) {M +m 4 m’ + p'} 2m,
tor (“ Theory of the Gamma Function,” § 37)
log @e) o [ (=2 {log(=2) + v} da.

p(ew) 275 1 — v
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Now, by considering the various cases which can arise, it may be readily seen that
M4/ 4+ p = 0.

These constants all vanish unless ©, and @, embrace the axis of — 1. When
1 2
this take place, suppose that w, lies above, and o, helow, the real axis.

Then pl=0
m == 1 pwhen (e, + o,) lies above and 1/L below the real axis,

M=1.

w=0"

m =0 &When (0, + w,) and 1/L both lic below the real axis.
M =0J

pl=—1

m' =1 when (o, 4~ o,) and 1/L both He above the real axis.
M=0

po=—l
m =0 IWhen (@, + @,) lies below and 1/L above the real axis.

M=1 J

We get similar sets of values when the imaginary parts of o, and e, have opposite
signs to those just assumed.
In all cases
’ ’
M+ m' - p =0,
and, therefore, with the values assumed for A, and X,,

7_1 (@ + ) Fl(“]“’?) o= (o] 0)

1y () Py (5)

Similarly we should find
I‘Q'—l ,{a’:lt_fﬂ[) Pt ]_‘_‘]_(EL ](9}) —Sm/'mS (@ | o))
Ty () pr(@;) '
But these are identically the fundamental formulee for the double gamma function

found in § 23.
The values assumed for A\, and >\ are therefore correct.
We have, then, the two important formulee

log u(a]oy @) oSy (@) (M -+ m - ) 2m0 - 57 (0) 2Mare

P2 (@, @)
o[ e (—2) {log(—2) + o}
-} 2‘77‘4( (1 — o) (1 — e~ow) dz,

and  log p, (0, @) = — 2Mm 8 (0| @), w,)

(= 2 (log (= ) + 7]
- Iito[27 [I (1 — e“*’l”) (1 "‘”24) dz + log Ol]
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which express as contour integrals the double gamma function, and the third double
gamma modular form. The first relation only holds when a is positive with respect
to the ’s.  The second is valid for all values of o, and w,, subject of course to the
dominant condition that w,/w, 1s not real and negative.

It is worth noticing that the first formule may also be written

10 L;(é;l_wl;)-w;—)‘ = QSQ (G) (771 + /)n’) 27TL + 2811 (a) {2M7TL + y}
2 2 K2 (;“az(,_ Z)“l 10}.‘, (_ Z) :
_}“ 271- _{L (1 —e wlz) (1 . 6‘““23) CZ@.

§ 46. Subject to the condition that the real parts of @ and L are positive, we may
now express our contour-integrals as line-integrals.
Consider the integral

. e (—2)71 log (— 2
ar [L 1 —( e““?") (lg-:-e““’ﬁ; o

By hypothesis the logarithm has a cross-cut along the axis of L, the initial value
of its imaginary part lying between 0 and — 27..  Hence if the contour of the
integral be reduced to a straight line from o to €, where e is a point on the axis of L
very near the origin, a circle of small radius |e| round the origin, and a straight
line from e back again to 4 o, we shall have

L[ e (= ) log (= 2) . @ e~ (— 2y dz
o 11, (1 —_ C—wl,‘:<1_6—wzz> dz = — (6 (L)(l — e—-aqz) (1 _— g-wzz)

+ 1 (2”0"““‘0{103’6 + o(0 — )} 10
2ar o (1 — em o) (1 — ¢ o)

The logarithm in this second integral, which results from the small circular contour
surrounding the origin, has its principal value. The integral itself is evidently equal
to (§ 15)

Lo ) e~ S, Y (@)
Zﬁjo A0log ¢ + (0 — ")][mlwﬁ — B0 ey S
+ terms involving positive powers of €]
1 4 e5® (@)

= S (a)loge — 5 R 4 terms which vanish with |e].
) ..1(1)1(1)26"1 €

Thus e (=9 g (=)
277' JL (1 — g'*w,?.) (1 . 6_“’25) CZ//
Y N £ , L srw
- - _[6 (L)<1 _— c—w;z) (]_ _ 0_w22) + 2S 1((1,) 10g € 2w1w262 -

-+ terms which vanish with |e].
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Now, as has been seen in the “Theory of the Gamma Function,” § 28 cor., when
# (L) is positive,
[(L) "Zé— — log € — y 4 terms which vanish with |e|.
And evidently
(=2 (%=

€

The integral under consideration is thus equal to

PN/ —ax 1 S,@(a ,
O 6 o P ()} -8 o)

(1 —e=w#) (1 — e~ w¥) 00,7

+ terms which vanish with |e].

If now we make e coincide with the origin, the integral last written remains finite

and we have

j’ e”®(~ 2)"tlog (—=z)dz
2m JL (1 — e=92) (1 — g™ o)

dz | —az 1 .8, e iy
[(L) i(l — 6 “hj) (1 — u)zé) wlwnzz + 121-2_(—(-6) o= € «QS 1((1)} - 728 l(a)'

This equality may equally be written

log 1;;;)(‘(6(1:1015;) — oSo(@) (M + m + w) 2a0 + ;8" (0) 2Mmre

[ (= ) log (=D gy
27TIL (l_e—wlz)(l_e—w.ﬁ) Cl,é
"y % S19@ | SO@ L a]
- '!’O(L) {(1_(, “’1‘)(1—6 wz) 22 + P e QSl(a)J

under the assigned conditions that « is positive with respect to the o’s, and that the
real part of L is positive. We thus express the logarithm of the double gamma
function as a line-integral.

In order to obtain a line integral for log p, (w,, »,), we notice that we have

” N
log @ = jo (67 — e~ 2,
and therefore
L[ o= log (=2 +odde |
27TIL (1—-@*0)15)(1_6_%2) + 10gOb

i e SO@ SO
R P e e L 0T
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Therefore on making @ = 0, we have by § 45,

log p(a), “’2) = — 2Mm ,B (0, v,)
2 1 S90) 8@ ) )
- .((L) B {(1 — 7 0F) (1 - ¢ o) —1=" 122( : +° 1;3(0) +erfi- 2SI(CL)J} '

On differentiating the formulae which express the logarithm of the double gamma
function as line and contour integrals, we obtain

+ S(a) [’y (M4 m 4 m). 71'1,:‘

2 § e~ Jog (— z)dz

/ —
‘l’ 2(0’ [ @, w:l) - 27 1, (1 - 6—wlz>(1_ g.—wzz>

o\ de — e S, o , .
== { T T O (a)} oS (@) [(M + 4 m)2m].

Similarly, again differentiating,

. ooz (__ Z){IOO‘ (—-—- 2)}[l2

b (a] o), 0) = o yL p— (tlj_ o) + 28,0(2)(0‘)[7 + 2m(M + m + m/_l

— T e

- j:(L)zdz{(l e e SO @) S (o )[(M—|—m+ m').2m}.

And, if s be greater than 2,

' e (— z)*"log (— z)dz * o7 (— z)s !
\/1(3)(6‘6'601: wg) = 2:11' ,(L (1(__ e—)w;z) (11(6—w23> = j' (L> (1— e“‘f”)(]>—- o or)

Notice that, when we have the more narrow restrictions, the real parts of a,
o), and o, are all positive, the constants m, m’, and M all vanish, and there is a
substantial simplification in the formule.

§ 47. We may now deduce expressions as line and contour integrals for the first
and second double gamma modular forms

Yar (@), @) and yy (o), @,).
We have seen (§ 22) that
1

~— (| o), @) = Yoa (@1, y) + vy (o), 0y) + =

a

P S T |

my g O+ M@ + 7;%@, Moy + Mywy, (Mo + Myw,)?

and, therefore, on making ¢ = 0,

1
722(‘”1> “’2) = - [‘Pz(l)(a\wp w,) + &J )

=0

so that, by the last paragraph,

- 1 S® .
Yaal@), ©g) = J’O(L) dz{(l ey (1— 6—wzz).- I — (0) + S ()<0)}
— 2S 0(0) 2w (M + m + m').

VOL. CXCVL—A. 2 U
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The additive term will of course vanish when the real parts of o, and w, are positive.
Similarly, we have

y 1
Yo (@), 0) = — [‘/’2@(“} wy, “’2)"';62]“0

- I’W —az( —z ){10(» <_—~ /) mf— ry; , ] (2)/ . = ,
== aLto[ ZwJL (1 o) (1 = oo dz + - R Rl =l @) 2w (M 4 m + m),
so that the first double gamma modular form is expressed as a line integral by the

formula

?’21(‘*’1, (02) = f

o0 ‘1 ) ) ()“u
0( )d/{(l—- o) (1— ooy L= s a8 (0)}

— 3,@(0)2m (M + m + m).
1t will be noted that for the modular forms

Pz(“’n wz)a 721(‘% wz)a vaaloy, ®,),

we have, by making @ vanish, obtained line integrals which are in general finite,
although in our fundamental formulee the restriction was made that the real part of
a should be positive.

This restriction was necessary to ensure that the contour integral should be finite
at infinity. It is clear from the mode of generation of the line integrals, that the
process which has been carried out is perfectly valid, since by the introduction of the

1 1 . .
terms log a, — —, — allowance has been made for the manner in which the contour
a a

integral tends to an infinite value as  tends to zero.

- §48. At the beginning of § 43 we entered on the investigation which has just been
given by integrating with respect to a under the sign of contour integration, and in
this way we deduced the contour integral for log T'y(«) from that for 4, (a).

We now proceed to show how the contour integral for log I'y(¢) may be obtained
without the employment of this process.

For this purpose we take the fundamental asymptotic equality of § 38, valid for
all values of s, @, 0, and w,, the many-valued functions with s as index having their
principal values with respect to the axis of — (w; + ).

o qn 1 ! :
¢ ¥ - = Cz(s,odwl, “’2)+ (s — 1) (3~—2jw1wg {—Vﬁ

‘.0
iy =0 iy =0 (@ -+ M0y + Mgy’ (pna, + gno, )s

1 1 B
(pnw y—? (gnwy)** }

20 4+ o, + Wy { 1 R 1 B 1 } . 1 3 { __,,‘1, L
) (s — 1) w0y | (prw, + qroyy™  (proyt  (gnw,)™t s—1 |l (/pnwl)g

1
+ e
[ovERr]
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S (@ + o + w,) _ Sy (2 + @) _ 281'(‘” + )

(pno, + gnog)’ (pnw,) (qnony
+ § (-—)’” (m + & - 1) {Qsm (Lt + (O] + 0)2) + gBm-H - ggsm (a + w]) + 2B7n+1
=1 pmts \ m (]90’1 + gw2)1u+s (pwl)nﬂ-s

_ oS (¢ + wl) + gan}
(qw2)7n+a

where, if @ is positive with respect to the o's, {(s, @|w;, w,) may be expressed by
the integral
p—az (__Z)s—ldz

L (l . e—w;z) (1 —_ e"b)gl) (§ 39‘)

eemi | Q—L;I‘(l — s)f

Make now s=¢, where e is very small; expand the various terms of the
asymptotic equality in powers of e neglecting those higher than the first, and we
obtain, if the real part of a is positive, :

PR qn

(prn 1) (qgn + 1) — elog Il 11 (a + mw, + myw,)

my =0my =0
. “ e (— 2)7!

T oon L (T = or) (1 — ¢—o%) {14 elog(—2)} {1 4 ye} {1 4+ 2Mem} dz

1 9 ;
F oo, (L e+ )} 2 (poy + g0, [1 = elog (pon =+ quyn)]
— (npw )’ [1 — elog pnw,| — (nqw,)*[1 — elog qnw,|}
8,2 @+ 0, + 0) (14 9 |1 (po, + g1 = elog (pro, + gnon)]
— npo, [1 — elog pnw,| — ngw,[1 — elog qnng]
+ (1 + ¢)[pn (1 — elog pnw,) + qn (1 — elog gna,)]

+ 5/ (@ 4+ o, + o)) [1 — € log (prw, 4 qne,)] — 8, (@ + o)) [1 — log pne, |
— o8/ (a4 wy) [1 — elog qno, ]

) (=) e [ﬂsm (@ + oy + ) + Busy _ oSu(@+ @) +oBuy _ gf"m(“iﬁ’_z_).iz}?ﬂﬂ]
m=1 " M (pwy + qug)™ (pwy)™ (goy)™

This equality will hold for all values of s, @, w,, o, if the integral be replaced by
Ly (e, alw), wy), the logarithms having their principal value with respect to —(w, + w,).

Equate now the absolute terms in this asymptotic equality, and we find, if « is
positive with respect to the o's,

—az (. s\l .
1 - ”2%,. fL (1 “ee—wf:g) (1z>,_ o) dz 458, (@ + o ty) — oS (¢ + @) =48, (@ + ).

But we have seen (§ 17) that
oS (@ + o) + 0y) = 8 (@ + o) — 48/ (@ + a) = =8, () + L.

20 2
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Hence, provided a is positive with respect to the o’s,

i eaz (___ 2‘\)"1

O [ L (L — e=m) (1 — e=os)

25y (@) =

dz,
and for all values of @, 0, and o,

§ (0, al o), 0y) =8 (a | o), 0,).

§ 49. Secondly, equate terms involving the first power of «
We obtain the asymptotic equality

pi am
— log HO Ho(a + mo, + my,)
Wy = 0y =

=[G bl alono) |40 (1) po = ilo 087 (0) [ + o)
= (po))* = (qo,)°]
= 1% 5,7 (0) § [(po; + guy)* log (po, + qo,) — (pw))*log (pa,) — (q0,)*log gu,]
+a(p+q) —nlogn[ 8,7 (¢ + o + o) (po, + goy) — 8,7 (¢ + o)) po,
— 95,7 (@ + wy) po, |
— 1 [S% (0 + @ + 0) (po, + qop)log (po, + qo,) — 58, (4 + o) po, log po,
— 35,7 (@ + @) gy log qay]
— [8) (¢ + o) + @) log (po, + qo,) — S, (@ + o) log pao,
— o8, (@ + @) log qo, |
—log n[,S) (¢ + o) + @) — 8/ (@ + ) — 8, (¢ + o,)]

® (=) W iq (0 + 0 + w,) _ oS (@ + @) o oS (@ + @)
me1(m + 1)y mam (po; + qoy)" (poy)" (pwy)™ ’

8

valid for all values of s, @, , and w,, provided the logarithms have their principal
values with respect to the axis of — (v, + w,).

In order that the labour of writing down cumbrous formule like the one just
obtained may be diminished as much as possible, we propose to introduce a symbolic
notation suggested by CAYLEY'S notation of matrices.™

If f(z) be any function of z, we shall represent symbolically

S+ o+ o) —f(z+ “’}) — [z + o)

by F, [ /(2 + )], the suffix 2 denoting that we are dealing with two parameters.
Thus the difference equation for double Bernoullian numbers (§ 17) is written

. FoleSu(z + o) = — oS, (2) + #-
Similarly F,[,8,% (¢ + o) po log pw]| denotes the function

* CaYLEY, ¢ Collected Works,” vol. 2. The corresponding theory for multiple gamma functions will be
developed by employing a symbolic notation ab initio.
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S19(a + o + ) (po; + go)log (po; + gy) — 8,7 (@ + @) po, log po,

— 8,? (@ + @) g, log go,.

| The analogy with the matrix notation would be more complete if p and ¢ were
replaced by p, and p,. The convention adopted here is, however, quite natural. |
And now our asymptotic equality may be written

pn qn
log I 1 (a4 mo, + mye,)

my=0 my=0

d . .
= — [a; (s, afoy, “’2)]3:0 + pg[ntlogn — 2 (; + 4) [+ (p + ) [nlogn — =]

_ + 72; Fy[(5,? (@) (pw)*log (pw) | + nF, [:8,% (¢ + ) (po)log (po) ]

+ 1, [8) (@ + o) log (pw) ] + logn [1 — oS, (¢) ]
g (=7 Fg{éﬁ(“_t“’)wizl..%l} ,

m=1 mMn" (po)™

+
for, as may be readily proved,
8519 (a + o) + ) (po; + qoy) — 58,7 (@ + @) poy — 5,9 (a + @) po, = p + q.

When the variable a is positive with respect to the ’s, we note that the part of
the absolute term in this asymptotic equality which is equal to

— [g; L (s, aloy, wz)}

s=0

may be written

—_— e~ (—2)—1{y + log(—z)}dz )
2m [L (L —¢=we) (1 — =) — 2Mm,S, (a),

which is the expression which has been proved equal to ,Sy(a) 2 (m + m') m

—log 20 by the process of differentiation under the sign of contour
Py, (@, ®y)
integration.
§ 50. But if we take the expression for log I', (@) which has been obtained in § 24,

9

. . a~
— log Ty (a) = a1 (@), @) + @yse (@), @) + loga

2
A @ a "
and write it
. a?
— log I'y (a) = 9 Y2 (@), ®y) + ygy (@1, 0,) + loga
PR qn/ . CL(’)‘
4+ Lt 2 = Llog(a + Q) — log O —-%_]_562-] ,

n=ce m=0m;=20

we may obtain this expression independently.
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For putting « = 0 in the asymptotic expansion of

log o (¢ + Q)

my =0 my;=0
we find

pn qn
log T II (myew, -+ myw,)

my=0 my=0

0
= — alito [&% L (s, a| o), wy) 4 log OL] + pq[ntlogn — n®(} + &)
1]

+ (p + q) [nlogn — n] 4 22F, [,8,? (0) pe log pe] 4+ nF, [,S,% (0) pe log pe]
+ Ty [, (w) log pa] + logn[1 — 48, (0) ]
3 (=)t F, {QS (o) + QBMH}

m=1 mn" (pw)"

+ (1).

This is the extension of STIRLING'S Theorem to two parameters. If for all values of
w, and w,, we putb

log py (0}, ®y) = — Lt ['ai {(s,alo), w,) + log a],

=0
s§=0

we may call p, (w,, w,) the double Stirling function of the parameters w, and w,
It is the same as the third double gamma modular form previously defined. For we
have by § 43,

¢ [ (—z)"Hlog (—7) + gldz ¢ ’
log p, (0}, w,) = (LLﬁo [erj ((1 — a‘—{wﬂ) ((1 _.>c~«>w°’)J —log a:‘ = MBSy (0] 0s).

= L [——i {(s, ] o, 0,) — log a} by §42.
a=0 <

§=0

We now see the exact analogy between the function p, (0, 0,) and the simple

Stirling function p, (@) = +/(27/w) as defined in § 31 of the “Theory of the Gamma
Function.”

For a brief inspection shows us that the result of § 30 of that theory may be
written

pn .
log 11 (m, @) = p (nlog n — n) + {5 (e) pelog pw}
1y =1

+ [1 + S"[ (0)] ]Og n + log P1 (w) + Sl, (w) 10g pw
§ ( — )Tit;l S"‘ ((1)) -+ 1Bm+1

me1 MM (pw)m

which is the complete form of StirrING’s Theorem for a single parameter.
. o
The analogy between this asymptotic expansion and
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log o (Mo, + mywy) = pg[n*log n — n? (1 + &) ]+ 2°F, [,8,Y0) polog pw]
nl 20 70

4+ (p + ¢)[nlog n — n] 4+ 2F,[,S,%(0) po log pa]

+ [ = o8 (0)]log n + log py (@, wy) + Fy [ () log pe]
A LACER

m=1 mn" 2 1 ( ]”")m

is so evident as to determine the nomenclature.

Note in the second place that the fundamental asymptotic expansion (A) of § 38

may, with the symbolic notation subsequently introduced, be written
K 1
— mio (¢ + mow, + mgw;js' = L(s alo,0) +

1 281(3)((0)
616 =57 ™ ey |

1 @) (a - Q& (g -
TS {S (wa).;*_l‘f?)} T ; F, {bl((;a)t@}
T § _(;Z_’;zs <m 48 — 1> F, {QSM (¢ 4 w) + QB”,,;,AI_}

=1 m <])w)7rL+s

§ 51. If in this equality, true for all values of s, @, o, and w,, we make s =1, we
obtain, since
Fy §55,%(0) (po) §

Fy {55, (a + “’>) = — 8,%a) .

pn qn 1 28 2 )(U) 1. 38’ (CL -+ (1))
> B ~F Al S S
mlzzo 7)222':10 a -+ M,y + Nywq I:tl [C (b (Llw]’ (Uz) + -1 + M 2{ pw }

+ nF, {89 (0) po log pw} — 8,2 (a)log n 4+ Fy{,8,%(a + ) log pot
+ § (___)m F {gsm(“ + CO) + ?B,,Hv]} ,

+ 2 int1
m=1 n" ! - (Z)wyn

which is equivalent to the result of differentiating the asymptotic expansion of § 49
If now we make a = 0, we obtain

PN (m’ 1 2S © (Cl) 1
1)11210 777'22 o M) + Moo, Lt {:C(S oy, 0;) + s—1 a
s = J

+ 1F, {58, (0) po log po} — 48,9(0) log n + Fy {58,% () log po}
+ £ Aok, [Bel bl

m=0 nmi 1 (pw> m+1

We now see that

pn qgin 1
e ] 2) o )
Lt [ml—o m72~ 0 Moy + ngwg, l‘" QSl (0> 1Og " F{le (w) lOg pw}

n = ®

— nFy{;8,%(w) po log pw,ﬂ

=0

-1 a
=0

= I |:€2(S o] w, 0,) + 2S ) 1} )

which is a quantity independent of p and ¢.
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But when p == ¢ = 1, the expression on the left-hand side may be written
efssl _ote * log n + + “”{bw(w + ) — log o, — log w@}
) 0 o 0 2(1)1607 w, 1 2 ol o
1 y -1 1
—w+ 1), + ) log (o + @) + " Mog ey + "7 T log ml]
o, 2
Since the principal values of the logarithms with respect to the axis of — (o, 4 o,)
are in all cases to be taken, we see from § 23 that this expression is equal to
Yoo (@1, ) + 55,%(0) 2(mm + m')m
For denoting by a capital letter the logarithm which has its principal value with
respect to the axis of — 1, we have
log (o) + @,) = Log (o, + o),
log w, = Log w, + 2mm.,

log wy, = Log o, + 2m'm.
And therefore
5%() .1]

a= s — 1 a
s = h
nor, w, + o o, + o,
= L]y - — 2 7 *——]—‘ — ]00‘ w w,) — loo @, — log w.
Al B lewg og 1+ 1 | @) g o) g @2

27 nwi + 2m m] — =L
wy [OF)
== 1 (@), 0,) + 39, (0) 2(m + m")m

We notice that this formula agrees with our previous results. For by § 47

Yar (@1, @3) + 5 (0) [(m + m)2m]

_ o el (=)t eds | 17
- c}-‘ifOI:OWJ{L (1—('”‘%)(1.._@ o) BJF a] 2M7”'381<0)>

and by § 42 this last expression

= L [2; (s, a|wy, wy) 7 QS()(Q) (1—{]

It is worth noticing that incidentally vas (@}, w,) has been obtained as a limit in the
more general form
Qi 1 q
Yoo (@1, ) == Lt I:IE 20— oLt log n
00
+ oLt 0 og (pw, + qo,)— log pw, — log quw,}

20,0,
[oVER]
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/m

o 4 1 4 1
—(1 +Z - (loor qo, + 2mm)
1

@

>10<r (po, + qo,) +

RELLALESS log qw, + 2m 'm,):]

where log (pw, -+ qwg) has its principal value with respect to the axis of —(w, 4+ w,).
§ 52. Let us next put s = 2 in the final equality of § 50.
We shall obtain, in the limit when % is infinite,

S — SPOT 4 (1 4 g ) S
,,u:om—o(a—f-wnml-f-macoq)z 2(s, “l“’b ®y) == — + (L + log 1) ,S,%(0)

- Fz{zsl(g)(w) log po},

the logarithms having their principal values with respect to the axis of — (@, + @,).

Thus L [ L(s, |y, o) — 5,90 _}_] + 1

s=9 s —2 a? W0,
a=0
sy 1 L log (po; + 1 1
— . —_— — ) o ', |.
S Y ot T o, 108 = log (poy + gen) + log po, £ log go]

Now the left-hand side of this relation is independent of p and g, and therefore we
see, by § 22, on putting p = ¢ = 1, that

: . _S®0 1L ®
(LL;% [52(57 a|w), o) s—9 az:‘ + 0@, Yar(@p, @) — 2(m + m')mS,% (o).

This formula again agrees with results which can be deduced from the integral
formule. Incidentally y, (o, ©,) has been expressed as the more general limit

( ) == ! loor: no—33 :
o (@), Wy) == —— L N2
Yal@w @) = 0 0 (myo; + 1mgwy)°

- .
~ o, Hog (por + goy) — log po, — log g, ],
172

where log (po, + qo,) has its principal value with respect to the axis of — (o, + o,).
§ 53. We can now finish the investigation indicated at the beginning of § 50, and
Ly(«)

obtain the expression for log- on(on, @) without integrating under the sign of contour
A\Dy, @Dy

integration. We have

2
— log Ty (] 0, ®y) = % Vo1 + @yay + loga

P g " a“l
+}izwﬁmw+ﬂ)1%ﬂ—a+ﬁﬂ,
sty ity
where Q = m,0, + n,o0,.
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Utilising the results of §§ 49-52, we find, when « is positive with respect to the o’s,

e (=) log (—2) +
—log Ty (a) = LI_,tw{ o [I (g __/6 i~ )0(1(_* iy )'y} dz — 2Mm, S|’ («)

+ 1F, { (8,9 (@ + o) — 48,% (0) |pelog po} + FofS (¢« + 0)log po}
+log n{,S," (0) — 55, (COS — log py (), ©,)
+ a[—8,9(0) 2 (m + m) m + 8,%(0) logn — F,{,8,% () log pw}
— nF, {89 (0) polog po} |

+ “L S1(0) 2 (m + m') w4 55, (0) log n — F,{,8,% (0) log pe} | } ’

the logarithms having their principal values with respect to — (o, 4 w,).

Now 251 () = 8/ (0) + @58, (0) + (;: 23, (0),
for the higher terms in TAYLOR'S expansion all vanish.  Hence

D@ e e (=9 {log(=2) + o)
g o, o) ZvJL U e

+ oSp () 2 (M 4 e + w) me + 5, (0) 2Mare,

which is the expression which has been previously obtained in § 45.

§ 54. We next proceed to consider the values of the double Riemann ¢ function,
{o(s, a|w), w,), when s is a negative integer.

By the definition of § 39,

P(L—9) oy =T
G (s, |y, wy) = (1 )c“‘I fL (L __Lb—w;()(l/)_ ) dz,

2

« being positive with respect to the o's.
Now in § 15 it has been proved that

2o — S () G ) (“)
[ N S R I ST+t
‘ -1 25”’ “) "
C (=) h(! 24
Therefore
LF 1 - 8> s =2 ], 1
L(s, ooy, o) = — ({)W e™ "’ (— 2)*dz {wlw/ 2S,% ()
v . W (@ o
+ 1([()“"'+(—) 77L’> +"'}7

the latter integral being taken along a small circle surrounding the origin.  [Since s
is an integer, the two line integrals in the standard veduction of § 46 destroy one
another. |
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Hence if s = — m, when m is a positive integer greater than or equal to zero,

Suaa (@)

Lo el o) = 70 ) )

Thus, when s is a negative integer,

oS
G (s al oy, o) = =2,

But by § 12 corollary, %ﬁf%l = Buuy (01, @) + 8. (a)

and therefore finally, when s is a negative integer,
Gy (s, 0oy, @) = o8_s () + B (o), ).

When « is not positive with respect to the ’s this formula continues to hold, as is
immediately evident by the theory .of the function {,(s, @|w,, w,), to which we shall
shortly proceed.

§ 55. We proceed next to find the values of (s, ¢]w,, »,) for positive integral
(including zero) values of s.

We have seen, in § 48, that when « is positive with respect to the s,

e (— 2)"ldz

) (W) = ey 1= oy = $510),

so that 5 (0, a]o, wy) = ,S' ().
Differentiate with regard to a, and we find

e~z

ol O T s 0=

= 8", (a).

Now by § 39, when € is a small quantity,

d'(e)
297

— ‘f e{l—clog(=2) + ... H{l—we+...}H1l—2Mem:. ..}
T 2rlL e(1— o) (1— ¢=o)

AT g,
L (]_ —_ (}_“’12) (1 _..@-wgz) Cl"

.CZ(] —— 6, (2] l wl’ wz) e (/,—-QMem."

dz,

so that, neglecting powers of e above the first,

eli(1— € 0o, w) = 8,%a){l — ye — 2Mem}
[’ j log (—z)e~=dz

- 5;6 L@a- emoe) (1 —ew) .

But we immediately deduce from § 53 that

¢~ log (— 2) dz

d ¢ | " o
— o log Ty(a) = 5 ]L (= o) (= amom) = 2m(M + 7 ') + 338, ().

2 X 2
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J"hlls [C7(8 (X/\C()l, w)) + ok_l ((—(/)] — 1‘//‘3((‘[,) + 2(”2 + ﬂl’)ﬂbzsl<2)(a).

Again differentiating, we have

e ar e
2ar ,‘l[, (1—- 6_"’1’7)(\1-— g“wzz) - 2&’1 (a)'

Also, if € be small, we have \

d(e—1) _, e~ (— )\ edz
) 2 — S = a 2Meme R
Z;( € d I wy, “’;) - ¢ J.L (1 — @) (1= o)’

u— €
Thus LEZ—ealopw)= — & 4271 Mm
€W Wy W0,y

[ ___—__”.LT_ /) 100'("— /)
+ ‘777'5[; (1—¢o® )(1 — o) dz,
so that, since

¢ “(—z)log (—2)dz
bilal o) = o G sy O m ) YIS,

we have

SLJZ l:zz(sa |, o) — !

(:jQ) 00,

]=%W@—£;—mm+mﬁ@@m.

Tabulating our results, we see that

—)
Z2 (3; a l @y, wQ) = i(is(-ﬂ—-'l’)! 2(8)(0’) when §>2;
=& )(a) + ¢,%(a) — wlw 2(m + m')r,S,?(a), s = 2;
12
= i _i(a) P, (ar) + 2(m + m)m,S,H(a), s=1;
= ,S'y(a) ,$=20;
= S_(a) + B, (o), »,) , 8 < 0.

These formulze hold for all values of the variable a, though we have only established
them for the case when a is positive with respect to the w's. They evidently agree
with the results established for the case w;, = w,in “The Theory of the G Func-
tion,” § 34.

§ 56. In a note appended to the “Theory of the Gamma Function,” it was stated
that a theory of the simple Riemann { function had been developed by MELtiN.® It

* MzELLIN, ¢ Acta Societatis Fennicae,” vol. 24, No. 10, 1899.
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was, however, published after my paper had been sent to press, and I was therefore
ignorant of his elegant results. Iixpressed in the notation which I have adopted, his
method is as follows.

Tt is evident from the expression of the function {(s, ¢, w) as an asymptotic limit,
that its importance lies in the fact that it is a solution of the difference equation

fla+to)—fla)=—",

when s has any value, real or complex. [From this result we see at once that we
should expect that, when s is a positive integer, the simple { function should be sub-
stantially a derivative of the gamma function, and when s is a negative integer, a
Bernoullian function.] Now when #$(s)> 1, the simplest solution of our difference

equation is evidently
1

o0
S,y w) =3 -,
C( T ) 7,50 (@ + nw)
This solution becomes nugatory when #(s) # 1, but MELLIN has succeeded in finding
a modified solution by the following ingenious modification of MirrAc-LEFFLER’S
process.

We construct the function
S_ s,k (0& 1 w)

when 1 > #(s) < — &, by writing — s in place of m in the m™ simple Bernoullian

function
antl am

and taking the sum of the first & 4 1 terms, k being of course a positive integer.

Thus @ @ RSl =8\
Srlalo) =00, =Y + 5 (7))

And now {(s, @, ») 1s defined by the relation

(s, a, w)‘ .
= —S_(0]o)+ 3 [—~ ------ — S fa4 (1) oo} + S @+ nmqw)],

ne ol (& + nw)

We readily see that this function formally satisfies our fundamental difference
equation, and we may at once prove that the series does define a function existing
over the whole plane.

For when §=0,—1, ... —Fk
it is evident that S_si(a]w) = S_, (@] w) 4 constant,
and therefore S--s;k (¢ @) — S_g1(a) — a7 =0,
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When a is large and s has any value, the left-hand side of this relation may be
expanded in the form .

Py (3)

s

+ s+l + ot + arts + cor
where the P’s are integral polynomials of s of degree indicated by their suffices.
As they vanish for (& + 1) values of s, we must have

P (s) |, Pry(s)
S""‘v’/”' (a + w) - S—ss/”' (a) —a ' = -%;‘}/ﬁr) + ?ii%‘;‘i + e

©0
. . 1 .
Thus (s, @, o) is convergent Wlthﬂ %1 (@ F na) TEY and is therefore convergent,

provided
Bs+E+1)>1, or §(s) > —*k,

which is the condition with which we started.

There is one point which does not arise in the work of MerLIN, who takes the case
w = 1. Tt is that throughout we must work with many-valued functions with s as
index, which have their principal values with respect to the axis of —w. For in
expanding S_,;(a + o) — S_,;(a¢) — @™, where « is large, we have tacitly

assumed that log (¢ + o) = log a + log <1 4+ cD, which, unless o is real, is not the

case when « is large and nearly real and negative, so that ¢ and « 4  lie on oppo-
site sides of the axis of —1, if this axis is the axis of the logarithms.

§ 57. It is now possible to construet the double Riemann { function by extending
the previous analysis. The function so constructed might be made fundamental in
the theory of double gamma functions and double Bernoullian numbers, these
functions arising for particular values of the variable s. We will indicate the
development of the theory from this point of view, for brevity establishing only the
principal results, or those which, as in §§ 54, 55, have been established only over part
of the @ plane.

The double Riemann { function &, (s, @| ), w,) is the simplest solution of the differ-

ence equation v
1
flo+ o+ o) = fla+ o) = fo+ o) + /(a) =
@, s, o, and w, having any complex values such that w,/w, is not real and negative,
The determination of @~* will appear in the course of the investigation.
In the first place, it is evident that when % (s) > 2, a solution is given by the
series
o 0 1
3

2
=0 g=0 (0 F Moy + Moy’

which will then, by E1sENsTEIN’S theorem, be convergent.
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When 2 > #(s) > — k, k belng some positive integer, we form a moditied solution
by the introduction of the function ,S_,;(a|w,, w,), formed as follows. We take the
mth double Bernoullian function, oS, (¢|w,, w,), write — s in place of m, and then
take the sum of the first (£ 4+ 2) terms.

We thus have

1 w, + o, Y A AT AW L
oS5 (0] 01, @) = S+ S Q )

1 =352 —s)ww,a? T 2(1 — 8) 0w,

and then ¢, (s, @|w,, w,) is given by

Sop(@) = 23 [Sofat(m oy +(m+ 1o,
— S i f{o+ (my + 1) o) + mawy}
— S_spfa 4+ mo, 4 (my + 1) 0y} + S_1 {¢ + Mo, + myw,}
—(a 4+ myo; + mywy) ],

an expression which for shortness we shall sometimes write

S_i(a) — 3 %0 X (@ 4+ mw, + myw, s, k).

Ay =0 iiy=

It is at once evident that the function so defined formally satisfies the fundamental
difference equation, and we may readily prove that the series is in general con-
vergent. ’

For when s = 0, — 1, — 2,. . ., — k, — (k + 1), obviously

zs_s’]ﬁ (C(, l W, 0)2) = gs—s (0& l Wy, wz) + Ao + I8

where A and u are constants.
And therefore

x (¢|s,k) vanishes when s = 0, —1, — 2, . . ., — k&, — (k4 1).
When z is large this expression admits of expansion in the form
p

Po@s) 4 D)

s Pk

+ + ...

wherve Py (s), P; (s), . . . arve integral polynomials in s of degree indicated by their
suffixes, provided that the logarithms which intervene in defining the many-valued
functions with s as index are such that, when e is small compared with z,

log z + 10g<1 —|—~f> =log(z + ¢€).

If the axes of w, and o, include the axis of — 1, this will not be the case for
terms of the double series, for which the numbers m; and m, in the term
= a + mo, + myw, are large, unless the logarithms have their principal value
with respect to some line between the axes of — w, and — w,, We take this line
to be — (0, + o,).
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And now, since x (2

s, k) vanishes for k 4 2 values of s, we see that its expansion
when 7 is large must be

Prys (s) Pris(s)
Terirs T s T

The series for &, (s, ¢| ), w,) is therefore convergent with
o w 1
3

; A Q¢
R (R R S S

It is then convergent when s + & + z > 2 or () > — £, |s| being finite.
We have then obtained a solution of the difference equation

S(a+ o+ o) = fla+ o) = fla+ o) + fe) =a™

where a~* has its principal value with respect to the axis of — (o, + w,), which is
valid for all values of s, a, w, and w,. v

§ 58. The identity of the function , (s, @|w,, »,) just defined with that previously
employed 1s easily seen.

From the mode of formation of ,S_,(«]w,, w,) it is evident that when a is positive
with respect to the o’s, we have

. — o
S_ss (| @y, wy) = the sum of the first (£ + 2) terms in the expansion in powers of  of

dz,

Lllgl,-t,‘s) eZMms[ o (__ z)swl
277' L (1 — @'“’1’5) (]_ —_— e*wge)
and therefore

l’]‘ (1 ‘S) ezMﬂrLsI _ 2 (— /)é -

o L (1 — o) (1 — =)

QS—S,OO (Ob\ wl, wz) g
Therefore when # is large we have the asymptotic expansion

1 1 4w+wl+w)

< 1 1 —
Saste + (nt Deop ol = oG o am Greg® s 1 e, (prayy-
1 1 2 s Do (s Fm—2) N (e + w)
+ S ) s—1 + 2 (-...)"‘ ! an, : m+s-]i. 2
s—1.0, (pnrw) 1 s (pnw,)

a formula which may be proved to be true for all values of a by a term-by-term
expansion of the series for ,S_, . {a + (pn 4+ 1) o, |0, 0,}.

Now from the expression for {, (s, a|w,, »,) given in § 57, we see on taking the
(pn + 1) first values of m, and the (¢n -+ 1) first values of my, that

Lsaow) =1t | 5 5 L Sosdet (gt Doy (gt 1oy

w=ow | =0 iy O(U + mlwl + }n)wﬁ)s

+ S_fa+ (prn+ 1) e} + Sogfa + (g4 1) @
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Putting £ = o, and employing the asymptotic expansion just obtained for
S_pud{e + (pn 4+ 1} o] we obtain &, (s, @@, w,) from the same asymptotic equality
as that by which it has previously been defined in §§ 39 and 41.

§ 59. As an example of the way in which we should proceed in a theory based
on the double gamma function as defined in § 57, we will prove the relation

I_:fl:gz(& @]y, wy) + b:]__] 280/(“)} = — iy’ (a] 0, wy) + 2(m + m)r, S, (@)

established in § 55 for the case when « is positive with respect to the w's.
In the first place, when s = 1 4 e and e is small, we see that

Sop(tfo, o) =81, (0] o), wy)

_ 1 . W) + Wy

—_ €<1,_ e)wldgfte‘l 2ew,w,
1 o 1 .

= (—" +loga),S)(¢) — —— + higher powers of e.
€ < 00,

Therefore taking , (s, & | »;, w,) as the limit, when # is infinite, of the sum obtained
by taking the first (pn + 1, gn + 1) terms of the double series

L1+ ea) + :8/()

BV s ——

=0 | =0 mz—()a' + “7/1“’1 + “sz’ 0’1“’2
= S'le + (pr + 1o, + (gn + 1) wy]log[u + (pr -+ 1) o, + (gn + 1) wg]
+ 58,0 + (pn + 1) o] log[a + (pn + 1)w,]

+ oSy [e + (gn + 1) w,]log [ + (¢n + 1)(.)2]];

the logarithms having their principal values with respect to the axis of — (0, + @,).
Putting o = 0, p = ¢ =1, we find

Lt [Cz(a afop0,) + — 8 (a) — {J

W , 1 W, 1
- 202 7nlwi + 771/7(01 - 2(;)_~ 100 "= (IL + 1)/ (,02) 100 (wl + w?)
w -+ 1 +o ‘ .

= Yy (0, wy) — ; s Zm(m + m’).

And now, in the limit where # is infinite, we find
VOL. CXCVL—A, 2 v
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: . 1«
Lt §2(s, oo, wg) -+ R S (C&)
s=1 - 1
K 1 ¢+ (0 + Doy + (0 + Do, o + o,
=33 — 4 SL I Sl SIS P LR . g )
0 @t mw, + myw, { w0, 20,0, }log or + @)

+ {l’l T Doy w})i wﬁ}lOQj’nwo + {a tnt Doy o+ w2}10
W@,y L0, R w0, 20,0,
1 & o] 1 1 o ) , ‘)__

= 433 [ 0 + Qq:‘ + oy + Yoy + 2(m 4 m) . S,

o a + O {
where Q = m 0, + 1,0,

] I4 ’
= — Y,V (a|w, w,) + S, ()2 (m + m)m,
the complete form of the result established in § 55 for the case where a is positive

with respect to the o's.
We may establish the other results of that paragraph in a sinmiilar manner.

§ 60. Finally we will briefly consider the reduction of the second form of the double

{ function to the double gamma function in the case when s
If we put s = ¢, where |e| is very small, we obtain

So(@|o), 0) = ,5_ (a]| o), o)

. ,}{1—610ga+. .

ooy ifwg){]_ +e- .. 3{l —eloga 4. ..}

+ By (0, 0y){1 — eloga + . . .}
= S/ (a)[1 — 309 4 isher powers of
= S/ (a)[1 — eloga] + € [4w1w2 “ o, ] + higher powers of e

And therefore, by the second definition of the double { function

o
. , Sa” w; T+ w,
Gi(e, ] w), wy) = oS, (a)[1 — elog a] + 6[.4-0’105; — ,,————2601% J

— 3 ;“, [QSI’(ccﬁ—Q—}—wl—sz){l——-e]og(a+ﬂ+wl+w£). v}

iy =0 iy =0
— S (a4+Q + 0){l —elog{a+ Q4 o). ..
—~ S a4+ 04 )1l —clog(a + Q4aw). ..
+ o8 (¢ + Q)1 —elog(a+0Q). .. } =1 +elog(a+4 Q) -+ ;;)—)E],

where Q = m o, + myw,.

2
B
1
5

Thus (50, a| o), @) = o5/ ()

and

o

L F’" (e afo, o) — 8, Ol)} = — g % log (o0 4 myo; 4 myw,) +

€=0 € iy =0 =0
[OVER |
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+ 5[ + (pn 4+ o, 4+ (gn + 1)o,]log[a + (pn + Do, 4+ (gn + 1) w,]
— S)[a + (pn + 1o, ]log[a 4 (pn + 1),
— o8/ [ + (97 + 1) wy|log[a + (g7 + 1) o, |

Aa’ t o + o,

+ - S ;( pn 4+ 1) (gn 4+ 1)

ﬁlwlw7 0,0,

in the limit when #» is made infinite.
Substituting the value of ,S,'(¢) in the various terms, expanding the logarithms, and
re-arranging the result in powers of n, we find, with the symbolic notation of § 49,

Lt [gﬂ (50w @) =58 '(Cz)]

£=0 s

- log{:f il (@ 4+ Q) 4+ pg[n*logn — 2*(} + )]+ (p + ¢) [nlogn — n]
0

ny Ny

+ 5 Fa[8,% () (po)* log po] + nF,[8,2 (@ + w) palog pa]
+ Fy[8) (@ + o) log pe] + [1 — ,S,(a)]logn

in the limit when % is made infinite.
Since the left-hand side of this equality is by the deﬁmtlon of L, (s, o] w, w,) finite
unless « is at one of the points
— (M0, 4+ myw,) m =0, 1,3, e },

my,=20,1,2,. .. o

we see that we have thus been led in a purely algebraical manner to the determina-
tion of the dominant terms of the fundamental expansion of § 49.
If we make @ = 0, and remember the definition of § 50, viz. —

(8, o, w,) — 59 (a)

— log p, (w, wy) = Tt FL(:_L,I:{)__JEJ( “-logal,
(E;O ’

we arrive at the dominant terms of the extension of STIRLINGS theorem to two

parameters.
If we utilise this result in conjunction with the one just obtained, we find

[Co G, H) 5 /(“2] — log py(e), w,)

P ogn pivqiv na

= —locrc&+1ogHII Q-—-IongI’(a—(— Q)+

F o[ po log po]
+ Fo[180 (@ + ) = 38) (0)} log po] — zso( )lob n

and by the definition of the double gamma function the expression last written
reduces to
2v2
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| @

log Ty (a) — [- o~ »2;);0’:} 2(m 4 m’) m

m S (8,a) — QS "(a

Thus _ exp.{ L ® () ;4‘1(0)} ==
s=0 S

. L (a|w], ;) st @) 20t myme
pa (@, w,)

We may utilise this formula to establish the fundamental difference equations for
the double gamma function
By the definition of the double { function of

§ 57
L+ 0) = 6(0) = Lt [ S ot o+ (0 + 1)

S_peld + (14 1) 0]

2 1
“LE 0 (5[17?;?;;)“]

Therefore, in the limit when # is infinite,
Lt [2:2 (« + “’1) - 2‘5 (“ + wl) & (0) —, S (”)]

=0 $ §
= 2 ]og (a0 4 Mywy) — S [ + o, + (n + 'l)w{] log [:a + o, 4+ (14 1) o, ]

+ 8, [ 4+ (n 4+ 1) wy] log [a =+ (n 4+ 1) o, + La + (4 1) 0] — ,‘"l 2
On reduction we obtain

o P (U + (1)]) =2+ wd) me S (e | w;)—‘

log {2y o7

” a4+ 1o \
= I l: 3 log (a0 4 myw,) — <~- e Does —J,—) log nw, + n:! .
== |, =0 ’ Wy . -
: . BXDIOS s, by the exp:
Funection,” § :

I'his latter expression is, by the expansion obtained in the “Theory of the Gamma
;) § 30, equal to

r ) o
— log ;Al(f—;if;) — 2m/m Sy (@] w,).

[The term 2m'm (n 4 1) which arises is absorbed by the identities which change
log (& + myw,) into log m,w, + log < 1+

— ) The preseription of the absolute
logarithms has been throughout left indeterminate. |
We thus have

7@+ o) _ D(e]e)

Iyt (@) - pr (@)

e L S (@ | m])
one of the fundamental formulee of § 23

Sufficient indication has perhaps now been given of the alternative development of
she theory of the double £ function
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Note.—The asymptotic expansions of this part were obtained in my original cast of
this theory, to which reference has already been made in the note which follows the
“Theory of the Gamma Function,” by the assumption that they would involve merely
powers of 7 and log n coupled with inductive processes. Such a method, though
long, is, could the fundamental assumption be justified, probably the most elementary
way of obtaining these results.

[Additional Note added July 5, 1900.—Dr. Hopsox has pointed out that, if we
admit the validity of the application of the calculus of operators to a parameter in
the subject of integration of a contour integral, the theory from § 57 onwards may be
developed in a very elegant manner.

We take the formula

'f(c[, + ®, -+ (og) —-‘](.(Cb -+ wl) "-,]{“ + w:z) +/(Cb) = ls ’

and the known theorem

J — f_l_‘(,l —;é) .(6—6‘5 (_ z)s-—l dz’

as 2
and deduce

. L’[‘ 1 - b\ ] —~z S -
oy =" ey
LT (/)/ Yda — 1) (3 ? du ')
T [ e (ot

'~

- fu ) (1 = o)

Parr 1V.

The Multiplication, Transformation, and Integral Formulw for the
Double Gamma Function.

§ 61. After the developments of Part IIL., we now return to the pure theory of
the double gamma function. As regards the multiplication and transformation
theories, two distinet courses are open to us. We may either proceed entirely alge-
braically, making use of the limit theorems which have been established, and so deduce
the required results without the intervention of contour integrals at any stage, o we
may directly utilise these latter to obtain the formule in question. The former
course is, on abstract grounds, preferable :* we ought to deduce algebraical results
by algebraical processes. But it is open to the fatal objection of leading to very
lengthy algebra. We will employ the two methods, side by side, to deduce the
multiplication formulse, and it will be observed that the second method is both more
elegant and more speedy. For the sake of brevity, the results of the transformation

* In the first sketch of this theory, before the discovcvy of the contour integml expressions, all the
results were obtained in this way.
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theory are obtained solely by this course. Inasmuch as the function I'ymz|w,, o,)

@, 0)__3\
LB

i

, the multiplication theory can

/]
can be expressed in terms of the function 17, ( a
e i "t e

\
\

be deduced from the theory of transformation. As the work of obtaining the new
expression is in every case almost equal to that of obtaining the results ab initio, we
adopt the latter course.

Multiplication Theory.
§ 62. We have from the definition (§ 19)
‘ 2 1
B () = — 2% X

=0 0 (M@ F Mgwy)

and therefore

Mg

772’3 1/}2(3) (7}7‘2) - 2 v 2 0 0 <
wity =0 ey = Z 4.

\

=1 e —1 @ 0 ]
= — 23 3 3 3 B ) \¥

- - Gine = 0 i = Tw S

P=0 w0 =0y =0 ( A T g A 0,

[ m /

e 11 7 A
- 5 rw, + Sw,
=5 s g0 < e
F=0s=0 J

m

the parameters being understood to be w, and w, when not explicitly written.
Integrate with respect to z and we obtain

kS

=1 =1 / . \
mA,? (mz) =3 35 P,? (2 et L B (i),
p=0¢g=0 - \ N /

where 7 is constant with respect to z.

N()VV (2 L @ B j 1 1
(z) = — D] bl }1 ] LT L, T .
‘!’:3 (4) Y ((1)], ww) + 22 + g l( 4 Q);z Qz}
Substitute from this relation in the identity (1), take the same number of terms
L . ‘ . o 1.
mvolving z on both sides of the equality, and remember that G1op T

always to be regarded as a single entity. We find that, in the limit when #n is
infinite, we have
mivti—1 mn»}—ﬁiz--} 1

W 1
. 2SS T p? 3
-+ mrP S o =m 3 ;
o o O 0 0 0?

my iy iy ity

where Q = m0, + m,w,.
Now we have seen that (§ 22), in the limit when # is infinite,
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1 | R
5 8 = Yo, (@), ®,) + o, logn + oo [log w, 4 log wy, — log (@, + w,)]

my=0 m;=0 QN’ 1
the principal values of the logarithms being taken.

m?

Therefore P o= log m,
(,01(07
so that we have
=1 m—1 N + © 3 ’1’17;2
M (mz) = S8 g (g4 PO I log m.
p=0 =0 n / @10, -

Integrate again with respect to z and we find

m—1 1 ntz ..
mfpV (mz) = % % 1/;2”( et (lw> —~ logm 4. . . (ii),

p=0 q=0 W0,

where s is constant with respect to 2.
Now we have, in the limit when # is infinite,

P (2) = — 2y (@1, 09) — Yoy (“’1» ®,) —

1 no/‘
iy lamatal

Hence we find, on equating the irresoluble terms involving z in the same way on
both sides of the identity (i1.), that, in the limit when n is infinite,

anae—1 3 I
m {S‘ A R I w>)} =+ m *{2 3 — ¥ (@1 wz)}
0

90y iy Wy My

W 1" _;:L—-I/ pwl +Qw3\
s
ny tily P g

and, therefore, when 7 is infinite,

1/z2L+;:L—1 1 . ﬂ' .
S =1m 2 2«/ i 1) (wl, Cl):z) — 7’)%2 2 Z/ -~ Y ((01, (1)2)
o 0 o O

ki 2 A” ]
+ m (m — 1) 91'7;—25“ {ZOZ' o T 7a (@1, w’)}

Now in § 23 we have seen that

4’:1_” 1 1 1
¥ =y = 2 (n+1) [( w”> log (o, + ;) — o log w,

0
my ity

1 )mm 2m b 0 + @ )
— = log W, — T = — ! * {log (w w,) = log w, = log w.
PR o, o 200, {log (0, + w,) S 01 g @y},

and, therefore, after some reduction, we see that

W + o
§ = m 2T 2 log m.
20,0,
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We thus have

=1 m—1 W, - W, 7”/ ~ )
it () = 35 g0 (5 P A Togu 4 m @ 2 logn
p=0 g= =Wy

Integrate again with respect to z, determine the constant by making z = 0,
Ly(mz) 1

and remember that Li¢ =2 Z)w —: we obtain the formula
I WNE) m

=1 in—1 / 7w, + S,
; 1 hiad?}
1I 9 \7 +
p i /. 6“-_3Su (tz) log
3

m Ty (mz) == =020 w,,,<;awl - w.)ﬁ,y

i

the principal value of the logarithm being taken.
§ 63. By means of the extension of STIRLING'S theorem to two parameters (§ 50),

a1 -1 /o \

s . s rw; - Sw; . . .

it is possible to express the form T1 11" 1% ("2 "-""%) which has thus arisen in terms
=0 x=0 N e /

of the double Stirling function py(w,, w,).
For, in the limit when = is infinite,

22 0 22
y7h(z) = AP | [(1 + ) uﬂ
0o 0 A

ey tiky

and therefore, under the same condition, we obtain from the result of the previous

paragraph
1]12’2 it 4 uL - 1 ’//1 5 _mE /fi2
mzet™ & T T —|— em e T
Wy m_,
— PICT L AL
. . ‘ s "_ + m__ ) . Ty Swy
ine 25 (nz) log =1 =1 ro, + s Yar 5 + ya ( $Im __~)
| 1 2 o ik
e g | 2 N 1I I <C N ¢
oI T, ( Ty T+ 50 ) v | z
2 "
r=0 $=0 - \ n -
L + Sw, rw) + Swy |
2 + i L\ it ) |
o - A g gy |
x4+ ¢ |
0o 0 i
iy
Make now z = 0, and we find
rW) + Swy
=1 - l it =1 =1 7 o w o
. - w + S rw, 4+ Sw, , m
n mw r,” (1—-J = o 1 " ) I I\ 4 ey
r=0 s$=0 \ n ’ =0 s$=0 n 0 0 0

6y iy

Tw, + S(‘f_z " ’ :l . 1 ﬁ"-’x_“" 55093
X Lxp. [ — <202 Q 'y%> -+ 4 mw 2 2 Q, + va

. = .
where <? ~~~~~~~~ PR / denotes that in the product the term for Wthh _ O} simul-

taneously is to be excluded.
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(Vo]
b
e

We have then, in the limit when » is infinite,

iy =1

I i —=
=1 - 0 Q

p—1 - - \
I II/ Fg—l <7 ! F o) — iy m- 2 - 20— 1 b 1
S

=0 s=0 mn )—- " , _:]:"‘-mﬁ’
[HOH QJ

wmy g

X Exp. [—- m(m— 1) 2 F 22 <E 3o — y22> + {(m — 1)1(51“ =1 (0 + )

1 3 (m[ - 1)2 [ , 1
_”[g_ wlw%} {2 . 2 ﬁ} + 721} :l *

Wy g

Utilise now the extension of STIRLING'S theorem and the limit formulse for
13 , 1 [ , j_— )
202 o and 202 o We find that

m—1 w1 /7“(0 + S
log T 1 1,71 (*—’—hg = {— mn® — 2m*n — m® 4+ 11 log m

r=0 s=0 m

+ (mn + m — 1) log (mn 4+ m — 1) — §(mn + m — 1)

+ (mn 4 m — 1P F,[,S,® () olog o] + 2 (mn + m — 1) log (mn 4 m — 1)

— 2 (mn+m— 1)+ (mn+m — 1) F,[,S,9(0) wlog o]

+ [1 =48/ (0) Jlog (mn +m — 1) + (1 — m?) log p, (o), 0y) + Fy [48" (o) log «]
— m? [n-‘“’ log n — j:;—] — ', [,S,9 (0) o log 0] — 2m? [nlog n — 1]

— m*n Fe [,S,% (o) wlog o] — m? [1 — ,S,(0) Jlogn — m*F,[,S," () log w]

—m (m — 1) ° +~ 22 { S, (0)2 (m + m)m 4+ nFy[8,? (0) wlog 0] — ,S,% () log n
+ B[S, (o) log o] |+ [ T et o) + T

X {-—- 2 (m =4 m')m ,8,% (o) + o= log n — F,[,8,% (o) log w]}

where the logarithms have their principal values with respect to the axis of

— (o) + o).

The labour of reducing such an expression is evidently very gr eat. It is diminished
by observing that the result must be independent of n, so that we may neglect all
terms which involve this letter ; but even then it is only after several steps that we
prove that the right-hand side is equal to '

1 =58/ (0) Jlog m 4+ (1 — m?) log p, (0;, w,)

— 2(m + m')m [-— (m? — m)( L+ ©)° + 2m? = 3m + 1 o + o) + m? — 2m + 1]

4,0, 12 w10, 4

= [1 — 8, (o) Jlogm + (1 — m?)log py (@, , wy) + (M* — 1) 2 (m 4+ m') m,S, (0)
VOL. CXCVL-—A, 2 z
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We thus see that

m~1 -1 P :
m Ir T, <I w};ﬁ.ﬁ&’?) — l“pq (wl , w@) :IM-—[ @) l’ o (=12 (m + m') Sy’ (o) .
r=0 s=0 e o '

§ 64. In the case when m = 2 the preceding result has an especial importance.
Tt is convenient to write

Cl)}, wg),

I‘2<z + C;l ‘ wy, w2> =y (z

/
I‘Q(z -+ a;°

4

Wy, w;z) =Y (74|w1> wQ)a

0, + w,
Ty (z + @y “’2> =73 (2] o, my),
= /
and in accordance with this notation we put
Dy (2@, w9) = o (20, ).

These functions evidently correspond to the funetions
y I

o (2), 01(2), 03(2), o5 (2),
in WairrsTRASS theory of elliptic functions.

Omitting the zero argument, we take

/ \
[ I . ! . .
1‘9< ) 1o wz) = 7 (), @) and two similar equations,

2—-1 2-1 » A
so that oo, ( o %ﬁﬁ’g ) = Y172 Ve
=0 $=0 \ =

the parameters o, and o, being omitted.
And now, from the result of the preceding paragraph,

3.2 (in A+ ') muS) (0)
’

— 38 P
Y172 Vs = P2 (wl, wg) 280 1
o that o (@1, @) = 3/ (y1yyys) 207500 gtlntmimSTe,

We thus express the double Stirling function of @, and w, in terms of the product
of double gamma functions whose argument is a half quasi-period.
We have previously seen in the theory of the simple gamma function that

oL 11 (0]
p1 (@) = 3211<§"> ;

and the formula just obtained is the natural extension of this result.
§ 65. From the results of §§ 62 and 63 we see that we may express the multipliea-
tion formula for 1'y(z) in the form
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3
)I«["—Il noﬁl F ( 7(?1 +:9C03>

FQ (?nZ) - T O §=0 0 m e~ 25 (mz) logm + (1 — 1) 2 (m + ') ﬂlgS],<0)'

P2 ULEM](wD 08 )

We now proceed to obtain this result at once from the expression of log 711—2(2) )
: PA®@y, @y
as a contour integral. 1
We have seen (§ 45) that, when « is positive with respect to the w’s,
I‘Q (CL) J AN N7 g
log —="~ = S, (a) (M 4+ m 4 ') 2m + ,8," (0) 2Mm

o (= 9~ {log (—2) + v}
2 et (e ) og(—z + v} ’
+ ‘).n- jTl (1 — g—wl;;)(l - ¢ w.;,z) CZ,('«,

and, therefore, m being a positive integer,

Iu+ 70 + sSw, )
wm—1 =1 g\ ¢ - w =1 m—1 S
log I 1T |- k m} = M4+ m+m)2m 3 % ,5, ( + Lwlifwg)

r=0 s=0 - Pz (wp wg) r=0 s=0 m
in—1 m—1 7o -iawu
) o= (— /) Hlog(—2) + o} = = e =
.9 ’ ¢ e r=0 §=0 .
m?,S,'(0)2Mme + : : =
.+ 2 1( ) + 27 JL (1 — 7o) (1 — ¢ @)
- _.o L (m=1) oy 1 — 7O
])ut 1 — e % + [ "+' e N‘ﬁ_ o= 'wl
1 — €
and (§ 14)
=1 jiz—1 7(‘)1 -+ 5(01\ ( W, 5 - ((1) [0} \
o —) = =) —m?,B . B, -2
,.:_2.0 820 Sy < + Sy n’ om :Bi(o), @;) + 5B, m’ m/

= S, (ma e, w,)) + (1 —m?) B, (0, v,).
Therefore when « is positive with respect to the o’s,

rw, + sw,

n mn F3< +
log m Hl{ m >} = (M + m + m) 27 ,Sy(male, w,) + 2Mm S, (0)

=0 =0 pa(wy, ;)

, . ¢ [ e (—2)Hlog(— 2) + Rk ldz
+ (m + )21 — ) By (o, 5) + - [ =i

Since m is a positive integer, the axis L defined with reference to the parameters
o), ®, 1is the same as that defined with reference to the parameters ma,, mo, for the
lines representing these two sets of parameters are coincident. If then we change
z into mz, the integral last written becomes one which (§ 45) is equal to

log - Ly (ma) + S ’(mc&)flog m — 2Mmi} — Sy (ma) (m 4 m')2m,

Dn(wl, wo)

the arithmetic value of log m being taken.
2z72
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And therefore

=1 m=1 T‘ <CL 4 1 ’)w] +,« S(ﬁ)2>1
10% I 11 e j - (m + ,m/) 27‘_0(1 . "“2)031'(0)

=0 8=0 pa (@), @,) )

La(ma)

S5, (ma) log m + log »
T 1< ) 2 bpg(wl,wg)’

which is the result required. This result has of course only been proved by means
of the contour integral under the assumption that a is positive with respect to the
o’s.  To establish it in general we should appeal to the principle of eontmulty

§ 66. Before concluding the multiplication theory, we deduce expressions for the
values of

m=1 m-, g .f'fjm + (1)3‘
DD 1/2(’)«' o g~“>, where » == 1, 2, 3, . . .

p=0 ¢=0 m

We recall from § 29, that within a circle of sufficiently small radius swrrounding
the origin, we have

log 1y (2) = = log# — syyy — 2= 3% 0 45y ;;})l -

Again, from the multiplication theorem of the preceding pamgraph, we have, by a
similar expansion,

log Ty(mz) = — (m + m')2m (1 — m?) S, (0) + (1 — m?) log py(w,, w,)
— log m[ [(0) 4 mz 8,2(0) + "7 ,ﬁf&(o)] + Tog Ty(2)

=1 i —1 M1 g1 W
i [Py + .‘1“’%> LS y(Poy + gy
+log I 11 Tz< s 2 ady )

p=0 ¢=0 p= 0 q=0

\

Fu(mrey ]

Combine these two theorems, and equate coeflicients of' various powers of z in the
resulting identity. We find

n 1 w-lasl Do, + qw,
Yooy, @) = w1 S "(0) log 1~ — DD SRV l>< 1 ; >’

—.[,0,20 n

/

. ,mﬁ ‘@ 1 1 uLMI @ 190’1 (]wz
Yalo), wy) = e — 1 25(0) log m — me pY 24 (A .

“‘1/3 0 g=

/

and, when # is greater than 2,

riv—1 m—1 . ! " - .
Y b, <£3ELI_(1“’:Z> = (=) — Dl —1) 3 ¥ 1

p=0 =0 m =0 gm0 (0 11900, )"
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Transformation Theory.

§ 67. We shall now consider the theory of the transformation of the parameters
of the double gamma function. It must not be supposed that we intend to consider
the general linear transformation.

There exists no such theory for the present functions—at any rate, no theory
having the simplicity and elegance which is characteristic of the elliptié functions,
and the reason is obvious—the change of w, into w, + ®, makes no difference of' form

in such a series as
S 3 1
= = (2 F M@y + 77220)2)3,

but it makes a change of comparatively great complexity in such a series as

§ % 1
w0 w0 (2 A M@+ 1yw,)Y
The former series is the basis of those occurring in the theory of elliptic functions,
the latter of those occurring in double gamma functions. We shall then limit our
consideration to transformations which result from the change of w, and w, into
w,/p and w,/q respectively, p and ¢ being positive integers.
By definition we have
: T 1
B ( — 93 3
P |op o) = — 2 % X 3
( l ’ ) 1y =0 1y =0 (’?’ + Q)) -

where Q = 0, + m,o,

. ®w, o o ® 1
Hence %@( z| Y ’) = =23 3 e ey
. P q 2y =0 m-_-'—O(Q + Ny, 7_7%27&)3
P q
p=da=1" @ 1 !
=—23 3| ¥¥; e
r=0 s=0 0 7wy S,
i e\ 2 — I 7
o z~< + » + 7 + mow, + mng/ ~
p=1g=1 r S
6§ , 1 p)
=3 5w (s 4+ +2),
s=0 $=0 » q

it being understood that the parameters when not expressed are always o, and w,.
On integrating successively three times with respect to z, we shall find

A p=—=1 g—1 . § N
2 3’) =y, (?)+log T T T, ( 24 L‘")
=0 s=0

log 1, <z
e 2 »’ \ P

where x, (2) 1s an algebraical polynomial in z of order 2.

As has been stated, it is possible to obtain x, (z) by purely algebraical processes,
use being made of the limit theorems previously established. We may, however,
obtain its value as follows -~
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In the relation which has been obtained, change z into z + o,/p and subtract the
first result from the one so formed. We find by § 23,

c ] s . @,
].Og ru»u—;}—{]——— o 27)7,[,,(1 e Sl (2 ';/> = XL (g) — X» (Z __l_ 7)1)
-3 \ L \ ,
P1 Y
ot ( 0, | . (e Swy |
+ log 11 { " + p | ©2 f — 2mm %S, (/ + —C:)dl w,)
§=0 =0 \ / i /
pi (w,)
“1 does
P

where m has the value asigned in § 22, and wheve m,,, = 0, unless 5 '
)

: L1 4+ 2 does not
r 7
R ; W, . . 3 - f"w,"{ . P, .
lie between — 1 and —-7, in which case m,,, = + 1 as ,I,( 18" positive or negative

1 oy :

Now (“ Theory of the Gamma Function,” § 7)

3\ N
\

"—-‘1 / 9 9 B |
log I T, <4 -+ S(w> = log T, (- %) + q log p (0,) — log p, (a;‘ ’>,

=0 . :/ \\

and by § 18 of the same paper,

n

w \ w7/ 1)
Xz <, + pl) —~ X2 (2) = 2w (iny,, — m) S, ( ; {%)
Similarly, '

\

X2 <Z + %) — X2 (2’) = 2m (7";139 — ’”'l/) SJ., <Z

where 2’ has the value assigned in § 21, and m/,,, differs from it in that pw,4qo,
must in the definition be substituted for o, + w,.
Now we have seen that (§ 22) m — m’ = 4= 1, the upper or lower sign being taken
as [ < §2> is negative or positive ; and, since p and ¢ are positive integers, the same
1
is true of m,,, — m’,,,.
Thus

— 7 A .
MW,y — M = 1, — m' = p,, (say),

and now x, (z) satisfies the two difference relations

;

‘ ® ¢ 37
X2 (5 + “];1> = Xo (?) = 2mu pyy S, <z

, 4 ]
;) — X2 (8) = 270y B, (zl
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and, therefore, since y, (z) is a quadratic polynomial in z, we must have

wl (1)

A\ S
X, (2) = 2m oS, < g

If we determine the constant by making z = 0, we have finally

p-1 q—1 Tw Sw.
I 1T </ + 4+ J)
' \ r=0 P q/
T, (2 )= : : e 2rup,q S (
A /

) -} constant.

1] @ B

]
(

)

o Wy

»oaljr

i

=g

From the values of m,, and m, it is readily seen that w,,, = 0, unless the axes to
(0 + ) and (qw, + pw,) include the axis of — 1, in which case

Moy = — 1if Hw, + o,) is 4+ ve and 1(qo, + po,) — ve
Py = 4 1if (o, 4+ wy) is — ve and I(qo, + po,) + ve.

§ 68. The constant which enters into the transformation formula of the preceding

. E W) s .
paragraph can be expressed in terms of py(w;, w,) and p9< L 2). For this pur-
‘ A *\p’ g

pose we consider the contour integral which represents the double gamma function.
Since p is a positive integer,
| L= _rgten
1—e- w‘a r=0
And therefore if the integral, its contour, and the logarithm which occurs in the

subject of integration, be defined as in Part I1I., we have

[T s (=0 o)
2m JL (l—ewl/)(l—k )

_._LS e= (=) flog (=) + 9} 3 2 R G
2

=0s=
P dz
L (1 — e=or) (1L — = o)

for the hisector of the angle between the axes of w,/p and w,/q is the same line as
the bisector of the angle between the axes of 1/w, and 1/w, We therefore have by
§ 45, when @ 1s positive with respect to the o’s,

Wy W, K
- Q”/} 2y gL

N wg)
‘.r_"’ i ® ) N\ ,
log— -\ 217 8 <a ‘ 2;1, j) (M, + 1 p,,) 2m—,S, ((IL )

2 —1 ¢ ’)(1)1 Swq p=1q-
="3'3 log {P?/“"' ) (/\}—(’m—{-m)Z'mE 38 (a4

r=0s8=0 Pﬁ(wl,w)) =0¢=0 o

p—-1lg—1 < 0\
-3 12 < 4+ — “01 ?‘ai*:) 2Mre.

r=0s5=0
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. , Ll . . .
Now by § 39 M =0, unless the axes of T and (o, + o,) include the axis of — 1, in
which case

M = F 1 as l{w, 4+ o,) is positive or negative.
Therefore M,,, = 0, unless the axes of [ and (qw, -+ pw,) include the axis of - 1,
in which case
M,,, = F 1, as I(qo, 4 pw,) is positive or negative.

Again, by § 14,

! : p--lg=1 70 ‘v,
QS‘<a~w-‘,w—“:EES<q 1— g B, (0, wy) — B -1,#3>.
- }2’ (I> 7'=0~<>==0‘~k + ) 1[“] T (wl w) - l(.ﬁj q/

We therefore have
w [P . 7w SCOQ
I‘2<0; 2% 19(oa—|—7‘+”(—\)
log —+L 17 =% 3log — 4 !
) P, JCA} #=0 r=0 pa (@), @)
AV
) o/ ) ) !
+ LpggBl(wl, o) =3B, (2 )} (m 4wy 2m 4 S 0|2, ) 2w (M, — M)
P’ e gy
+ SO( (;‘ - > 2are [, + My, + M,,, ~ m - m = M].
But from the values which have just been given, it is clear that
MZ”’/ M == — Meps e
We thus have, when a is positive with respect to the s,
O LTI A B TN o) @)
log T, <.c¢ P > = 1240 820 log I‘o(a ~|— (/) + 2y, o5 <Ol » g

+ log p, (%’ &;2) — pqlog py (o). wy) + [2‘7.(12131 (@1, 09)—,B; /(;1 ’ (7\] (m + ') 2m
\ / (

0,

b

B (e f‘f:\

This result agrees with that of § 67, and on comparison of the absolute term we
see that

log TR Iy <m' Swz\ pq {log py (@, ) = (m -+ m') 20, B, (0, wy)}

=0 s=0 D

/A W, ; /@ Wy 1
{loo 21 1, -(f) — (m ) 2m0,B, <;1 , q-)j
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This may be regarded as the transformation formula for the double Stirling
function p, (@), w,).

Notice that when p =g¢=m, p,, = 0, ,B, <w--1~ @> = ,B, (v, w,), and there-

wm’ ~
fore the preceding formula becomes

p=laq- /@, + Sw, "
log 11 II ry(— ~~~~f"7’> = m” log o, 0,) — log ot
=0 320 mo Pz( L 7) P2 <m m

+ (L — m?) 2m (m 4+ m') ,B, (w0, @,).
Comparing this with the result obtained in § 63, we find

log p, <;’;, ;’;) log py (@, @) 4+ [1 — 58, (0)] log .

This result may also be obtained by the transformation of the line integral
which expresses log p, (0, ,).

§ 69. We have stlll to consider the transformation of the first and second double
gamma modular forms

Yar (01, 0y) and  yy (@), @y).
With this object we write symbolically

and we write

p-lg=1 T® Sw,"
S, = s s"¢< " ( 14 719), where m=1;

r=08=0 P

so that S, is a form analogous to the modular forms introduced into the theory of
elliptic functions by ABEL.

By § 29 we know that within a circle of sufficiently small radius there exists the
expansion

%

log Ty (2) = —log 2z — 2y — 5y — E, >§)ﬁ + = 2/4;?

Take now the formula of § 67

7\\ p—19—1 i »—=1q .
logl‘( 2,2 = zvloovr<+“’1+ >—22100I‘2(7;0;1’+§w“>

I P q47 7=0 3=0 —0 3=0

+ 2y, o3, <Z

and expand in powers of z.
VOL. CXCVL-—A. 3 A
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We evidently obtain

w, ©; 0\ 7 2 2t
— log 2 — (J )7 — 1, e e
) 722\]) Ty Yol P q/)z 3y + Ayt
P2 2 2t
= —log z — yp (@), @;) 2 — 75 (o) “’2)} = 5 T 4
2 ®, o ®, o,
+ 25 + S +...+ 2”‘#10,7[23 <0 S 9> + 2 o8y <0 b )
rooq r g
+ 2 S@ o, D2) b .j
250Ny )T Y
where we put symbolically
® @ 1 1
= 3 e =
ny =0 my= 0(7721(‘)1 + ”lﬁw ))“] ™

And now, equating coefficients of the various powers of z,

w0, Oy A p=1 g~ 7«&)] Sw,\ ,/ w, o,
2 N = VY Wy, Wy) = ) e a1y . S ol 2L 2
7~2< ’ ) ')’20 ( 12 ) ,20 320 \l‘o Va + q ) #]”q Riad(] \ P 3 g
W, O 1’ 1"“ @ /Wol \ @7 | w2>
T =Y w Wy ) === — - [ 27)'0 S ol =
y?l( 3 q> ')/21 ( 1 z) r._O o 0 ~ \ j) + Mp,q b1 ( z) s g 5

the transformation equations for the first and second gamma modular forms.
Note that we also have, where m > 2,

p—=1g—1 o [ 7O Swﬂ\ " 1 1
(] )= e -
If 7 = wy/w, we may put o® 1y, (@, o) = ¢y (r); and now, putting p = 1, ¢ = =,
we have

VL

‘T _ oS o [5@: 1
92 (%) —9a (T) ==y 51% < " >"" 2arLay g
And putting p =n, ¢ =1,
Vi
2oy (N7) = ¢y1 (7) = — o)° 2 4: @ C w‘) — 20Tt -

We get analogous formulee by writing @, yy, (@1, @5) = ga(7)-

The analogy between these results and those obtained in the analysis of elliptic
functions is obvious. We cannot obtain, however, results which will connect such
expressions as

I (7 + 1) and gy (7).
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Integral Formule.

§ 70. In the general theory of multiple gamma functions the fundamental integral
formula expresses the fact that the integral of the n-ple gamma function can be
expressed in terms of (n 4 1)-ple gamma functions of specialised parameters. As we
have not yet defined the treble gamma function, we cannot prove this theorem for the
case when n = 2. In the case when n = 1, this proposition reduces to ALEXEIEWSKY'S
theorem (‘“Theory of the G Function,” § 13). We proceed first to translate this
theorem into the notation of the present paper, and then to give an alternative proof
capable of extension to the n-ple gamma functions.

The G function is substantially the double gamma function with equal parameters,
the two being connected by the relation

~ oz . 2—2%
T, (2| @, ) =G<;> (2m) o o 2 T
[““ Theory of the (x Function,” § 29.]

By differentiating ALEXEIEWSKY’S theorem we obtain
0= 4%log 27 — 2 —w+—~—|—(/—|—a—1) ol'(z + a) — —logG(z-}-a),

and therefore, writing z for z 4+ «, and substituting from the relation just quoted, we

find
0 = _;+%+<; — 1>w%10g1‘<%>+w%10g112(2

o) +z:)c9 log w.

But logT ( ~;~> log T, (2

We thus have 2y (2

w) — <»---1>logw
syt o|w)=8(#lo). . . . . . o (i)

On integration we have

[/ g T, (0] 0) da=alog T, a]o) = 8, 1] ) o log P01

We may put z + a in place of z, so that
1 d : 8
(= + a);élogl‘l(z—l—a]w)-l- wé;logl‘z(z—l—a-}-w}w) =8,(z + a|o).

And now, on integration with respect to z between the limits 0 and z, we obtain the
extended formula

ﬁlogl‘l (24 alo)dz =(z 4+ a)log T, (24 ¢|0) + wlog Pgl(i(: j_—:’rw‘;))

-8, (z+ alo) + S (¢]|w) —alogT; (a|w).
3 A2
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§ 71. There are two alternative methods of obtaining this formula, or rather of
obtaining the fundamental relation (1).

Firstly, we may directly transform the series which expresses ¢, (2| v, o).

We have, from the definition,

1
@, ) = 2y (o, “’) + Yoo (w, ) + -

— Py (2
o 1 1 5
S| ]
+ o |+ (i + my) @ (my -+ my) @ + (my + Mmy)? w?
Ty

Put now m, + m, = ¢, a change which is equivalent to grouping together terms
corresponding to points on the cross lines of the figure,

There we have

— (z 0’) = Yo (w) + 2 yn (a)) - 1 - E% (ff‘”j; et 1 + (e +1) 4}

2+ ew €w n?

= Yo (@) + 2y (0) + % + §' [‘“'}’“ - l] (1 - z‘) + ‘?6 ) 7:

2 4 ew 0]

Now we have seen in § 28 that
0% (w) = 1 logw — 1 — y — m
21 w?| o Y 6 ,'

1
Yar () = o [y — & —log o]

We therefore have

2

= )= (= 1) = olo)= 8/ (:— olo),

which is equivalent to the former relation.

Secondly, we may make use of the contour-integral expression in the following
manner.

We have (““ Theory of the Gamma Function,” § 30), when « is positive with respect
10 w,

6 (| w) = 2; L (= llog(=a) + v} o

B
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Therefore, under the same limitation,

a ” . 6-—(z,l.+w),:'(_ 1,2)'2 {10g (_ 2) + ,Y}
o W7 () = | T o= (ot ofo)
. ® 1
. , @ ( .
Now, since ,? (¢] o) _;,Eo(a F ey’

it is evident that ¢,® (¢|w) is homogeneous of degree — 2 in @ and w.
Therefore, by EULER’S theorem,

5 AN 2
(3, + 00 )0 (@]0) = = 27 (0] ),
so that

(] 0) + o (@ + 0] ) = 2, (u]0)
On integrating twice with respect to a, we obtain
CL\I,I’ (0/, w) -+ wti,g’ (a—l—w l w) = x (a, I w)’

where y, (| o) is a linear function of .
Changing o into ¢ + , and subtracting, we see that y, (¢ | o) satisfies the difference
equation characteristic of S,"(«|w), so that it can only differ from this function by a

constant, which will vanish, as we see by making ¢ = 0.

We therefore obtain again the relation required.

§ 72. We proceed now to the analogues. of Raasr’s formula. 'This formula may be
written (“ Theory of the Gamma Function,” § 8)
' 2

j.wlog (24 a|w)dz = aloga - a- 3 log =~
0

w "
We will evaluate
rllog I, (2 + a|o, 0,) dz and relog Ty (2 + o) o, w,) dz.
0 0

The method which will be employed is the same as that by which Raase’s formula
itself was originally obtained ; it was, in fact, first invented for the proof of the
present theorem.

Let
() =j.0110g I'y(z + o] o), w,) dz.
Then
ar(ey __ j‘wl Yz + a) ds
da T o Ty +a)
Ty (e + o))
=1 A
RRNO)

= — log Ty (a]w) + log p, (w,) + 2mme 8, (¢]w,),
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and, therefore, on integration,
rl logTy (2 + | @y, w,)dz = — f log T, (a|w,) do -+ a log p, (o)
0 0
+ 2mar S| (@] wy) -+ rl log Ty (2| @y, w,)dz.
J0
§ 73. We proceed to evaluate the constant term
(m‘ log Ty (2] oy, w,) dz,
0
by an application of the multiplication theory for the case m = 2.
We have
[} 2w,
" log Ty (22) dz = & j' log Ty (2) dz,
Jo 0

and therefore, by § 65,

j:l dz {log Ty (2) + log Ty (z + (;1- » + log Ty (z + (§> + log T <4 + ‘Br_zi‘i’z)

/

— 3log py (w;, ;) — o8y (22)log 2 + 3 (m + m') 2w S/ (0)}

1] “de{2 log Ty(z) — log (| @g) + log py (@) + 2mm 8/ (2] )}

Put @ = Lw,, u,, and § (o, + o,) successively in the formula which we have just
obtained for rl log Ty (z + a) dz, and substitute in the formula just written. We
0

obtain

3r1 log Ty(2)dz
0

o ] ot oy

=[P+ F 4= 2 Jrog milon et = (5 + o) log pufen)

0 0

i 3 [ @2 3 +
+ 2ma [%Sl ()| @) — "31&%' ‘”2\ — 5 (2 [‘”z)“‘ 5, <w1 2’"ng|w2>—]

/ .

+ 3w, log py(w;, ®y) + 35, (20)) log 2 — 3w, (m + m') 27,5, (0).

By means of the formula

(e +olo)

[“tog Ty (@] o) da = alog 1 (a] @) =S, (a]0) + o log e
0 1\@
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we see that

[f + ﬁ + Jotw - % f;] log T (2

® ) ' o o ' w + W, ®, + .
= o Ty (%) 4 % 1og 1y (Sen 4 2% % 1og 1 (% o)

\
\

w,)dz

. . _ ‘0, + o,
- (;1“108" Py(o)|0g) +48, (0 |@y) — S, <a; | wz> - Sl(% | wz> - Sl(@l”‘g"q’"

/

.

Dy

o fpz (o, + '%1“ lo) Ty (@ + Dl ;) Iy (0, + 91%_9; ]wz)}
P o) + 5] 0,) pri(w;)

and this expression in turn, by utilising the multiplication formule when m = 2 for

b

+ w, lo

the simple and double gamma functions and the simple Bernoullian function, is
equal to

W, w,” W,

(— 20, + (;1> log py (w,) + [% -y S0, + S (0 + ;] w,, wg)] log 2.

A\

J 2 2 &l + o
+18/(0lws) = 8, (Flo) + log 135y

9 : ) R 1
Ly <% “’2) pr(wy) l

i 3w,
~ [0, + o, of g [ +7 log py(ay, wy).
11(“ 5 ~§w2 Iy \51‘%)'}

Now, on making w; = w,, we obtain from the multiplication formula

tog [ 12 [ 02) i(0) | = 3 1o o, @) + [} 1] og 2.

\ A

Therefore the expression which we have just found reduces to

A 9
@, 0,

<_' 20, + ‘2_) log p, (a,) + {% T4 T %, + 3“ 25y (o + @, | @y, @)
+ 58/ (0w, 05) | log 2
+ &8, (0] wy) — Sl(% l “’.-2-) + 3w, log py (@y, wy).
And therefore
3 log Ts(z o, )=
= 3w, log py(w), ©;) + 3wy log py(wy, ©,) — 3w, log p, (w,)

— 3wy (m -+ m')2m S, (0) + (1 + 2mm,)l: - Sx<%1w2)+% ‘2/("‘;(02)] ;
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since the coefficient of log 2 is equal to

2
N N Wy

w, , W :
— o -+ 13 -+ 2 281 (wl + w, I @y, wz) o 22 ZS{(O l 0y, 0)2) J,«%QS]_(Zwl l w, wg) =0.
We have, then, finally,

r log Ty(2)dz = w,[log p, (@), 0,) — (m 4+ m') 27,3, (0)] + w,log P°<az°;)(;)°)
0 2

4 ;027 (1~ 2mare).

We thus see that substantially the double Stirling function of o, and o, is
expressed by —%1 K‘ log 1Y, () dz, or, by symmetry, by (lq {:) log 'y (z) dz.  We have, in
fact, the relation
L ﬁl log Ty (2)dz — “* log A

pa(@y, ®y) — (m + w')2m S, (0) = o >
+ 1/) [100 Wy = QWZWL]

where A is the Glaisher-Kinkelin constant (* Theory of the G Function,” § 3) ; and
therefore

pa@y; @) — (m + 1) 2m58, (0)
= [10“F2()d —'—‘;—?g—‘zrﬁﬂlog]j“()d % og @2

02— w,* 0,*— 0w, 17((01 — @y ) w,’

for, by § 22, log w, — log &, —2(m — m’) m = log Z))
: 1

§ 74. We may readily prove these results by the relation which exists between A
and py (). [The latter is a convenient way of writing p,(w, w). ]

For, when each of the parameters is equal to o, we have (“Theory of the
G Function,” § 29)

(e

w) = < ) (277‘) Zcu co{:,f:z) +E

and therefore

Now from the multiplication theorem for the double gamma functions, when m = 2,

we have
2
s3]0
Hence
2r): . ,
G =" ot (0)2
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Now it has been seen that (“ Theory of the G Function,” § 17)
- mGE)”
and therefore

Pz (w)
P1 (@) (e )

which is the relation which was used at the end of the preceding paragraph.

§ 75. It is interesting as a verification of the algebra to notice that ALEXETEWSKY'S
analogue of RaaBr’s formula (“ Theory of the G Function,” § 16) yields the result
of § 73 in the case where the parameters are equal to one another.

This theorem is expressed by the formula

(1 log G (z + 1) dz = $log G (%) + {5 log 7 + 7glog2 —

Y0

and therefore, utilising the relation between the G and double gamma, functions,
@ 4
4(0 log Ty (¢ 4+ w|w) da = — flog(}(g) + —log27r + log2 + 2 T} logw

If now we express log G (1) in terms of log p,(») by the formula of § 74,
we find

j:log Iy (¢ + o] o) de = wlog p, (0) + wlog %%Z; + 1“."2’

a formula which is equivalent to the result of § 73.
§ 76. By combining the results of §§ 72 and 73, we may now write down the
value of

rllog Iy(z + a|o), w,)dz.
0
For we have seen in § 72 that this integral is equal to

— ["log 1y (@] ) + alog py (o) + 2mm S, (@] o) +| Tog Ty (2w, @)z,
which expression in turn is equal to
— alog Ty (a|w,) + 8, (a]wy) [1 4 2mm] — w,ylog Ty (@ + wy | wy) + (@ + @) log py (wy)
01 [log (o3 n) — (0 + 1) 20,8, (0)] + wlog 25 - 12 (1 2.

(y)
Thus
r logTy (2 + a| o), v,)dz
= — alog 1% o, [log g, (01, @) = (0 + ) 28, (0]

. Ty (e + )
(1 2mm) {8, (o) + T2} = oy log P2 Tl

VOL. CX{VI ~—A. 3 B
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Since, by § 64,

log py (@), @) — (m —+ 1) 2w 3,'(0) = Flog yyyyys 4 3 [1 — 25,'(0)] log 2,

we see that this formula may equally be written
"ml log 1y (z + «| o o) dz
=0

= — alog Ditelay) + @)1 log yyyays -+ w;, [1 —,8/(0)]log 2

p1(@,) o
W, Iy(a + wy]w,)
14 2mar) 48 (o] w. —2 b — o, log A——2
(U4 2mm) {8 (0] o)+ 3} — 0, log LS
This and the corresponding formula, obtained by the interchange of w, and w,,
P g y g 1 2
m and m’, are the analogues for double gamma functions of Raasw’s formula for
’ te) te}
simple gamma functions.
§ 77. In the particular case when « is positive with respect to the ’s, it is possible
to obtain more simply the value of

‘wl log I'y(a| o), ,) da
Y0

by means of the contour integrals investigated in Part 111
We give this method of proof as it leads incidentally to an expression as a contour

integral for lo 2 ()
& p1(®@;)
We find, on integrating the expression for log - ( L (e 2;) given in § 45,
®, &

j:l log Ty (&) dev — @, log p, (o), w,)

= (M + m + m') 2m J::lg-SO (@) da + o, 48,'(0) 2Mat — 5;% {L(* 4);; E}s; (:; ;)+ '}'} dz,

and the right-hand side, by an application of the formulae of §§ 6 and 44, becomes

(M 4+ m + m) 2m [-—- o, 5,(0) +S (O|w°)] + w49/ (0) 2Mare

~ ( (=2 {log (= 2) — (M + m/) 270 + v} dz.
27:'_‘1\ (1 — ¢— o)

©z
Now, reducing the contour to a small circle round the origin, we see that

P , — ) ?dz 8,/ (0] w,
2:"«_(M+'m)2m.[ gi-—zjzjw (2' )(M+m)2m,

and therefore
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f:log I'y(a) da — o log py (0, ©,) + o, (m 4+ m') 2m 2Sl’(o) — M2y ’

(=2 {log (= #) + v}
er 1 —eg— o dz.

8 (ofwy)
2 12’
show that

Since see that, to establish the formula of § 73, it is necessary to

(=2 {log(— 2) + v} s (@) "
27T§ 1 — g w2 l log ,,,,,,,,,,, ) + Rt

"

This may be readily done as follows :—
We have

toghele) _ o [ CH( e (= 1ty

© py(w) 2 (1 — ¢mony?

Integrate with respect to @ between w and 20, and we find

(=2 log (=) + )
"ZJ - de

1___60;2

ll

[Mlog ry(a] w)da — o log pa(w)

_— (—ariog(—) + g,

2’1T 1 — ¢gmo2

lD

for it may be readily seen that Q% L k)_gﬁ(:jz);fl dz = 0.

z

[

[This vanishing contour integral occurs when RAABE's formula is proved by means
of the expression of the simple gamma function as a contour integral.]
But as we have deduced in § 75, from ALEXEIEWSKY'S theorem,

f log Ty (o | w)da — wlog py(w) = wlogf:((w; L

The contour integral has, therefore, the required value.

We here conclude our investigations of the algebra of the double gamma functions.
It is evident that the formulse admit of still further development ; they lead, for
instance, to many curious relations between the integrals obtained in Part IIL.  Such
considerations are, however, foreign to our immediate purpose. The development of
the integral formulee and the theories of multiplication and transformation in the case
of the double Riemann { function is interesting in that we thus combine many of the
formulse which have been obtained separately for Bernoullian and gamma functions,
and the algebra by which such developments are obtained by the extension of
MeLuiN's definition of the simple { function is in many ways attractive. Owing,
however, to the length of this paper, we do not propose to consider it in this place.

3B 2
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Parr V.

The Asymptotic Eaxpansion and Transcendentally-transcendental Nature of the
Double Gammnma Function.

§ 78. There remains now the consideration of two more general characteristics of
the double gamma function :—

1. It admits over part of the region near infinity an asymptotic expansion in powers
of the variable.

2. It cannot be obtained as the solution of a differential equation whose coeflicients
involve exclusively more simple functions.

It will afterwards be seen that these characteristics are common to all gamma
functions.

Let us consider first the behaviour of T, (z) near infinity. We know that its poles
are given by

my =0,1,. ..o
2 4 mo, + myw, = 0 ! » }
my=0,1,. ..o
_(g)z
oy
zsw

Therefore near z = o the poles of I'y(z) are massed together between and on the
negative axes of w, and w,, so as to form a lacunary space on the equivalent portion
of the Neumann sphere. Between these axes, therefore, an asymptotic expansion
cannot represent the function. We have to consider whether such an expansion can
exist outside this lacunary area, within, that is to say, the non-shaded portion of the
figure.

We shall in the first place proceed entirely algebraically. It will be proved that
within this non-shaded area a quasi-Laurent asymptotic expansion of the form

8
>

7

J

(1,2z)*logz + (1,2)* +

7

[

»

Q

1
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exists, and then it will be shown that, the possibility of such an expansion being
established, its actual form is readily obtained by a process of difference-integration.
Subsequently we shall verify the results by an alternative proof by means of contour
integration, this proof being the natural extension to double gamma functions of the
one employed for functions of a single parameter (“ Theory of the Gamma Function,”
Part IV.).

It should be noticed that the expansion under consideration differs materially from
the expansions obtained in Part III. In those expansions the limits of the number of
terms of the series and products, the quantities pn and ¢n, formed the infinite basis
terms ; but in the present case that basis is the variable itself.

§ 79. We first write down the asymptotic expansion for

logTy(z + ¢|w, ).
We have obtained (“Theory of the G Function,” § 15) the asymptotic expansion

log G(z + a) = % — log A + 3—+—-C—L "o og 27 + ((z + %~:—D~ ———> log z
82 ( _(=)"Buyy
o4 (@ — 1) " 1) + n2,277 (2n + 2])4“‘

(——> Bn
+ Wg*l 2n (27’!; — 1>z2n-—1 ’

principal value of log z being taken. There is, in the language previously employed,
a barrier-line along the axis of — 1.
Now in § 70 it has been seen that

logG(Z)::——log I'y(z w)—l———locr 27 — <( ;-;))z—k—}j)log o,
and log A — 5 = log ** E ) + % log w.
Therefore
‘ 0F2(2+a]w)__ (z+0—w)P 3 a 1
g = (T s = =2 (5= )
o (=)™ o m+1(0>
+n§] mam { ( l )+ m + 1 }’
where now there is a barrier-line along the axis of — o.
S g (@ m1(0)
But by § 5 Hraltle) - 8, (0)e) + S22,

so that we have finally
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D tafe) 32>

1
°8 pz (@)

S (2 + OL{a)) log ~+— ) <?)(Cb‘w)

+§<ammmmm>

me1 o (m 4 Dz

with a barrier-line along the axis of — w.
When o = o, we see that we have the asymptotic expansion

r (z Fw}a))
P (o)

1 3z o ’"1)30)

12 e 1 Mewz™

§ 80. We will now prove that, provided z be positive with respect to the w’s, there
exists an asymptotic expansion for log T', (2) of the form

(L2 log 2+ (1,2)" + i -

3
s
Z

where (1, 2)* denotes a quadratic function of z.
In the first place it is evident that we have

2= 4 o, 4 nyw,,

where o is some finite quantity, and n, and n, are singly or together large positive

integers.
Now, from the fundamental difference equations of the double gamma function, it is

at once seen that

log Ty (@) — log Ty (@ 4+ 1,0, 4 nyw,)

2y g F
= log II 1I ((n + myw -+ myw,) - log i (et mo o)
=0 = my=0 1 (wz)
T (@ + myw, | o) 2o
- IOOWH() ’*"‘f;l'@‘)l‘)—"' e 200 7Tl.‘uf;0b1 (CL + M ‘ wz)

—2m'm 3 S, (a + Moy | @),
My=0

A term has been neglected which is an integral multiple of 27, and which is there-
fore absorbed by a suitable specification of the logarithms involved. The above
formula may be rewritten

! . Ty {a + 1m0, | @,)

log Ty (a0 4+ mw, 4 nywy) = |log I'y (a) — log i

: my=0 P1 (wz)
m2 (a4 77?00)7[0)])

1 I, 1 il — l
+[% 2 (@) —log I =

[1og Iy (a) + log non (a0 + myo, + mown}] 4+ a (1, 2)* 4 (1, n)

my=0 my=0

In the first place, if we put n; in place of pn and n, in place of gn in the procedure
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of the paragraphs leading up to § 49, we evidently obtain for

log Ty (a) 4 log II I (a, + myo; + myw,) ,

=0 my=

. 1 1
an expansion in powers of - a and uy VY term of which involves a algebraically, and
. s

of which the non-ultimately-vanishing terms are typified by (1, n)*log n + (1, n)*.
In the second place, consider

(
log T, (a) — log H p Dfe + mlwll(o’).
=0 P1 (wZ)

We have seen, in § 30, that
Iy (a) = e~ m G oo {mr e - Tip) (o] ,)

A ' ;
X H ] 1(CL + /,nlwl ! O)2> “a‘l‘x(l) (g, | wg) ~ ‘j; () (e | wz)] 5
1 I (m o, | oy)

my=

the product being absolutely convergent.
The typical term may be written

EXP [ @ (myo | 0p) + ZA: ¢1(4)(771]¢11w2) + .. }
Therefore (“ Genesis of the Double Gamma Function,” §§ 4 and 5)
log Ty (a) — 100;112 Iy (0 + mo,|o,)
admits an asymptotic expansion of the form

A
Ly

(1,n,%) log %y + (1,n,)* +

7

I M8

K

each term of which involves o algebraically.
‘Combining these results we see that

log Ty (@ + m0, + n90,)

admits an asymptotic expansion in powers of ;% and ;} , each term of which involves
) : 1 2
a algebraically, and of which the terms which do not ultimately vanish are typified
by (1, n)*log n + (1, n)*
But log Iy (a0 no, + ny0,) is a function of @ + 7,0, + nyw, It must then be

1 .
capable of an asymptotic expansion in powers of — . each term of which
Ny + MW,
involves a algebraically, and of which the terms which do not ultimately vanish are

typified by
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(1, mo, + nywy)?log (n,0, 4+ nyw,) + (1, 10, + 1,0,)?

And now by mere re-arrangement we may include a with the term 7,0, -+ 7,0, each

time that the latter occurs, and we obtain for log I'y (), where z = a + n,0, + n,0,,
an asymptotic expansion of the form

2o N LR M
(1, 2)*log z 4 (1, 2) —I—é’ .

§ 81. We can readily extend the previous proof to the case where z lies between
the axes of — w, and w,, so that it is given by

2= — ey Nyw, .

By writing the fundamental difference equation in the form

I‘Q(z —_— “’1) — Pz(z) Fl (,?A:_E‘fl_“f’ﬂ) o 2mmSy (e = | wy)

Pr(@y)
we readily see that

log Ty (2 — Mo, + nywy)

ny—1 T (z + My, [ ® )
loo T, (2) — = log _L——:"L—"—L]
5 +2 ( ) —— S P1 (wl)

n Mg =1 -
-+ [log Ty(z — 0| —w,0)+ = 2 log(z—mae, + mgmg)J
my=1 my=10

1

+ [_ log T, (z - wl] — Wy, w2) + g 10g D= me, mlle_“_’ﬁ_}J
~ my =1 pi(wg)
. _—
— 3 2mmdS) (z — o, |wy)+ 2 2m'm S/ (z 4 myw, | ;)
m =1 my =0

But by the theorems just quoted in the previous paragraph the three expressions
in the square brackets severally admit of asymptotic expansions in powers of -~ and
1

= whose terms which do not ultimately vanish are typified by
2

(1, n)? log n + (1, n)?*
and whose coeflicients all involve « algebraically.

Thus, by a repetition of the previous argument, log I'y(« — 1,0, 4+ n,0,) admits
when z =« — njw, + ny,, an asymptotic expansion of the form

(1, 2)*log z 4+ (1, 2)* +

A

I hv8
kg

1

In an exactly similar manner we may show that log I'y(z) will admit of an asymp-

totic expansion of the same form when |z|is large, z lying between the axes of — w,
and .
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§ 82. But when we come to the case of the negative quasi-quadrant given by
2= 0 — o, — Ny,

it is interesting to notice that the above proof breaks down.
As before, by the use of the fundamental difference equation, we obtain the
relation

log 1y (¢ — njo, — ny0,) ~— log Ty(#) — log Ty(t — o, | — oy, 0,)

— log Iy(o — o,

w, — wy) — log Ty(a — o — Wy | =y, — o)

— [—- log Iy(e — 0| — 0, 0,) + = log -i@»-wﬂhﬂmllﬂ“)J

iy =1 p1(wy)

s (e — m,w,| @)
+ [— log Ty(a — wy|wy, — o)) + mil log = ";;(wj)) o J

iy =1 my =1

Ny My ’
— [log (=0 — o) — 0, =)+ = 3 log (¢ = mw, — 7’)22m2)]

7

— 2 2mm S/ (a — m 0 |w,)— S 2m'm S/ (a - 7)22w2|w1)].

iy =1 iy =1

The several expressions bracketed on the right-hand side of this identity admit of

. . . 1 1 . .
asymptotic expansions in powers of —- and —, of which the terms involve «

1 T

algebraically ; and therefore the whole of the right-hand side admits of an expansion
of this form. But there remain the non-algebraic terms

log 1"9((0 4 log Ty(a — o, | — o, w,) + log 1, (()t» - wgiwl, — w,)
-+ log Iy (a —w — wzt —_ W), — “)2)’

and when we seek to group — 7,0, — 7,0, with «, we are forced back on the original
function I'y(¢ — ny0, — ny0,). Thus as regards the possibility of an expansion, when
z 1s negative with regard to the o’s, our-results are, as we should expect from § 78,
entirely negative. The region between the axes of — w, and — w, is a barrier-regron
for the asymptotic expansion of the double gamma function. When o, = w, this
region closes up into the barrier-line which occurs for the G and simple gamma
functions.

§ 83. We can now find the asymptotic expansion of

low 12 (¢ + o] o, 0,)
2 (7o), o)

for large values of

z| which are such that z does not lie in the barrier-region, « being
any complex quantity of finite modulus.
For such values of z and ¢ we have the expansion

VOL. CXCVI.—A. . 3 ¢
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Loz + a) , 2z (=)x (@)
tog BEED = [ £, @)z + A, (@]log = + i ()2 + ala) o+ & X0
where f(a) and ¢(a) are algebraical polynomials of degree indicated by their
suffixes, and y, (@) is, so long as = is finite, likewise an algebraical function.
Now by the fundamental difference equation

lop Do+ at0) | DG a) G+ aloy)

BTG T Re T

+ 2mme S (7 4 a|w,).

Again (“Theory of the Gamma Function,” § 41), we have the asymplotic
expansion

( _) m+ISfm+1 (CL l wg)
v om(m o 7

log == = 8/(z + a|wy) log,, 2 — 28" (z + a|w,) + S
Q o=

where log,, z is that natural logarithm of z which has its principal value with respect
to the axis of — w,. It is thus equal to

log z — 2m/are,

the latter logarithm having its principal value with respect to the axis of —(w, -+ ,).
We have then, if log z have its principal value with respect to the axis of

- (“’1 + C"Q),

[fila+ o)z + foi(a 4+ o) — fila)z — fo(a)]logz

eldilat o) = i)} +dulat 0) = dla) + § (= 0TI T

= —8/(z + a|wy) [logz — 2(m—4m)m] + 28D (z + a|oy) -I—T:l TSI

If we equate corresponding powers of z on both sides of this result, we find

Xe(@ + o) = xo (@) = 8@ o),

and similar relations among the /s and ¢’s.

We shall get, in like manner, another set of relations in which o, and o, are
interchanged. Remembering that the fs, ¢'s, and y’s are all algebraical polynomials
which vanish with «, we thus prove that

Ji(a@)z 4 fo(a) = Sy(z) — o oz -+ a)
¢ (a)z + Py(a) = 2{,8) (z + a) = o3, (2) }
Xr(@) = Snia(a) = o5y (0).

By this process, which may appropriately be called a process of finite integration,
we obtain the asymptotic expansion
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}Og‘I“ I, (+) = = [8¢(2) = 48 (2 -+ )] [log 2 — 2(m + m)ar]
g+
+ 2[,8 (2 + a) — Sy ()] + = 3 )mj:(ﬂ ,

log z having its principal value with respect to the axis of — (o, + ,).

§ 84. We may now obtain the asymptotic expansion for log T'y(z <+ «), under the
limitations assigned at the commencement of the preceding paragraph.

For this purpose integrate the relation just obtained with respect to o between
the limits 0 and o,.

Then, by the formule of §§ 12 and 76, we find

(2| o, / ,
— zlog p&LT + o[log py(wy, wy) — (m + m) 2m 38, (0)]
0, (2 + oy]o,
4 (1 + 2mm){S[(lez) + ﬁ} — w, log 4(~/—:(~;—2)~[~~) — oy log Ty(2)

= [591(2) — 12 + @) + 0,8/ (2) ] [logz — 2(m - m') ]

~ oPm 1\ W) — O QS m+1\0
ool o) = Su(e) — oy 8y(2)] + § LTSl Z oS,

Substitute now the asymptotic expansions for log — hGley) and log Dy & @5 wy)
pr(w;) ps(@;)

of which the former has been quoted in the preceding paragraph, and the latter
obtained in § 79.
Then we find

—w 10 "F (/I @y, 937_) (;n—}—m’)?m 2510 | oy, mz)]
1108
pa (o) @)

Sy (0] ,) 3.’
2 =08, (z)]
10g0, 40,7 = 2(m + m)m}
o 5
22 S 0|@
_ 2y S

— — (1 + 2mm) [Sl(z o))+ ;"OJ - [Sl(z w,)+

yzi (7

o)+ 8/(010) = 018/} + (- = §)loga.z

(= B
+ \ (77/ + 1) i 1 71+2(w:3) - Wy ]‘ngz"/' ‘.2—(‘0;‘3 - —fl2_ + ;j:;v;

+ 2 ( )1“1 L?LH(“’O) + Z (___)n 1Brto(@g) — @, QS,w-H(O) )

el nz? el nn + 1) 2"

Remember that log, z = log, ..,z — 2m’m; then we obtain by an easy reduction, the
asymptotic expansion

10 FQ (S) ¢ 2m (m + 'y o8, (0)
& pg (@1, y)

= — S/ (2) {log, 1,z — 2(m 4+ m') m} 4+ 2z 8,9 (0) + 5 2S ® (o) (+ + %)

m=1 M ('I’IL + 1) 2 3

+
3¢ 2
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which ig the complete asymptotic expansion for log 1, (2) when 2] 1s large, and z does
not lie within the barrier region negative with respect to the axes of — o, and — w,
If we combine this result with that obtained in § 83 we find the more general

e, <«

formula

] Fo (Z -4 CL) (321” (m+mly 5, (0)
O " S
° pz (@), @)

w3 (2 o @) flog, o, 2 = 2(mbm) o b 2 59 (a) -4 _3“” 2% () (F+4)

;L (_‘)/n QS/):L + 1(“’)

_‘m ’m‘:l m (7)7/ + ']) 2 2

valid under the assigned limitations.

The expansion is written in the precise form adopted, in ovder that the analogy
with the corresponding formula in the theory of multiple gamma functions may be
more clearly displayed.

§ 85. We might now conclude this investigation. Since, however, this would appear
to be the first time in analysis in which an asymptotic expansion with a barrier
rogion has been obtained, it seems better to give an alternative proof’ which shall not
need the difficult argument of §§ 80-82. This proof is the direct extension of that
previously given for the case of the simple gamma function.™  We therefore proceed
as briefly as possible.

In the investigation of § 57 it was shown that when |s| is finite and 1} (s) > — £,
where & 15 a positive integer, the series for {, (s, a|w), w,) 1s absolutely convergent.

 Suppose now that s = o 4 o7, where o > — k, and suppose further that z does not
lie within the region bounded by axes to —w, and —w,, and that ¢ is positive with
respect to the o’s.
Then, since

1 o)+ o, 5By | "'il (-— 5% oD 11

3 e e - . e _— - -
S (&) T (=52 =8, wy @ 21— 8) 0y wy ¢! ! at pe0 N 7*) e

.

2

it is evident that, if p be any positive integer, the absolute value of each term of the

sxpression

o8

BN

sP

sin s

931 (], o)
tends to zero as |7| tends to infinity.  For, by the restrictions on z and «,

= (red) ot where 0 < < 4,
and therefore

* «Theory of the Gamma Function,” Part IV. T regret to say that the Lemma of § 40 is faulty ; the
theorem is evidently only true when a/w is real. A slight modification will, however, establish the truth
of the main proposition under the conditions enunciaved.
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2* s?
i ast! gin ms | ’
where M is finite, however large || may be.
Hence the absolute value of

sP 28

Gy S (e, o)

tends to zero as || tends to infinity; and this theorem is true if @ is replaced by
a - myw, 4 mw,, where m, and m, are positive integers.
Hence the absolute value of

sPz*

sin s

x (¢ 4 mo, 4 myo,|s, k)

(where x is the function introduced for brevity in § 57) tends to zero as || tends
to infinity.
But

o0
L(s,afoy o) =8 _i(e) = % 3 x(a«+mo, + My, | s, k),

P2 () L G S

s = m—“x((l/ + myo, + Mmooy s, k).

sin s iy =0 =0 SIS

;‘E%Z (s, |0, o) =
Now the double series on the right-hand side is absolutely convergent for all
finite values of |7|, and the absolute value of each term tends to zero as |7| tends
to infinity.
Therefore ??i?g_(f.?.ﬁ‘,],,ﬁlgﬂa,)
S s

remains finite as |s| tends to infinity, #(s) being finite and not greater than 2.
‘When é{() is greater than 2, we have

728, (s, (biwl,wﬁ)[ l 2 2'sP |
=0 my=0 (@ + Mo + Mmyw,)* sin 7rsl

sin 7rs |

and therefore the expansion on the left-hand side is finite however large |s| may be,
provided |z| < 1
§ 86. Consider now the integral
“"1“‘(28 . 7 (s, (L|w],w)d
2m ssin s
The subject of integration is a uniform function of s, wherein 2 is to have its
principal value with respect to the axis of —(w, + ,), z is to lie within the region
bounded by axes to —o, and w,, and @ is to be positive with respect to the o’s.
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T
\ 3
B I
t / 5 ; \/\:‘- /{"” ‘*«zi — P
~n+npf? / I
\g\"—‘_—‘m L o \rg

In the first place let the contour be taken to lie along the real axis, passing from
+ @ to 4 oo, and cutting the axis between the points o= 2 and o= 3, as the
contour 1 of the figure. This is equivalent to taking the integral round a contour
enclosing the points 3 and 4 co.

When |z]| <1 the integral is, by the theorem of the preceding paragraph, finite ;
and by Caucnuy’s theorem it will be equal in value to the sum of the residues inside
the contour.

Now by § 53, when s == 2 + k, where £ is an integer,

— <“\)] 2+ &)
CE (S, C(/) - (]v + 1> ! 11[}2 (CL} ’

Hence the value of the integral along the contour 1 is

@ zi+k d2+.7c

2 G qarelea (),

and by Tavror’s theorem this expression is, under the assigned limitations, equal to

log 112%2_21(;)@ — 2" ().

Let us now make the contour expand until it becomes a straight line perpendicular
to the axis of o, cutting the axis between the points 2 and 3, and a half circle at
infinity. The value of the integral will be unaltered, since the contour in expanding
passes over no poles of the subject of integration. And by the theorem of the previous
paragraph the part of the integral which is taken along the semicircle at infinity
vanishes. Hence the integral along the perpendicular line (the contour numbered 2
in the figure) is equal to

Ty(z + a)

log =~ — > — 2V (a), when < 1.

Z

But the integral and this expression both remain continuously finite when |z| becomes
greater than unity. They are therefore equal to one another for all values of |z].
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Let now the perpendicular contour be distorted into a contour which encloses the
points 2, 1,0, . .. —n, and which after the point o = — n again goes off to
infinity perpendicularly to the real axis.

So far as the value of the integral is concerned this contour will differ from the
second contour only by two strips at infinity of length less than (n + 3) parallel to
the real axis: and by the previous paragraph the integral along these strips will
vanish. v

By CaucnY’s theorem the value of the integral along this third contour will be
equal to minus the sum of its residues at the points 2, 1, 0, . . . —n, together with
the integral along the perpendicular line cutting the axis of o between the points
—mnand — (n 4 1).

Now, when s = 1 or 2, the 1es1due of the integral is equal to the coefficient
of 1/e in

=) € s+1 /1 ]
(3(\1—-;+,,_>{( )1>'~S(g“)(c)+——m1) ( +_..+8 .,ﬂ/ S”)()
+<S(+ o1 (@) + (=) 2(m + ) m gsl<s+1>(a)1\§ (1+4elogz4 ...}

by § 53

and is therefore equal to

8

- H— + ...+ : — log z:l S5 (a) + g[%“’ (@) = 2(m + m') w0 S, ()],

s!

where the logarithm has its principal value with respect to the axes of — (0, + o,).
When ¢ = 0, the residue is the coefficient of 1/e in

1 + € log # 4., ’ F (CL) —uSu(ct) 20m + 'y '
- 029 - {QS () + elog polog, )¢ s } by § 60.
and is therefore equal to ‘
Ty (a) () 2
g/ a 10(" » + ]( ()»25-0(51) 2(m -+ m )m'
(@) % pu(on o)

When s = — m, the residue is
(=)™ 580 (@)
(i 4 1yze °
We therefore have

I "1(0)2 (i + ')
= e 10g {pa (wl(,az)q) S0 2 } — S (CV,) [10(»'2 — 2(/}/)}, 4 m )7.”_]
% 2° |:¢, (@) + oS, (a) {100 2= 2(m 4 m') m — i _— __:N}}

g (=" 41 (@)

me1 T (m + 1)z 8z alo, w)
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where the quantity log z has its principal value with respect to the axis of —(w, + a,)
and J, (z, @ o), ®,) 1s equal to the fundamental integral taken along a perpendicular
contour cutting the axis of o between —n and — (n + 1). It is evident that the

. . . . . 1
integral when |z| is large is of an order of magnitude less than e
We therefore have the asymptotic expansion, when |z]| is large,

9
Pl

9y ?

Po (2 + CL) g2 (v + /)8, (0)

00 — A
” P (o), @)

Slca) (a) [Iog PR 2(m -} fm') wL - } - ﬂ]

&

z
21

8, (a) [log = = 2(m + ') m — 4]

Qs s o & ()" (@)
oS (a) [log 2z — 2(m 4 m/) wd] —i-::nzz‘l g g

and the residue after n terms of the final series have been taken is of the same order
of magnitude as the final term taken.

This expansion is evidently the same as that previously obtained. The limitation
that @ must be positive with respect to the o’s may evidently be removed by
employing the fundamental difference relations for the double gamma function and
the asymptotic expansion for log I'\(z 4+ ). We are finally left with the essential
limitation that z shall not lie within the barrier region bounded by the axis to —w,

and —w,.

The Transcendentally-transcendental Nature of T'y(z).

§ 87. We finally prove the theorem that the double gamma function cannot arise
as the solution of a differential equation whose coefficients are not generated from the
function itself. Modifying slightly the nomenclature introduced by Moork,* we
may say that Ty(z) is a transcendentally-transcendental function. The proof is a
slight modification of that given for the G function (§ 30), which in turn was similar
to the investigation of Part V. of the *“Theory of the Gamma Function.”

In the first place it may be proved exactly as before that if the theorem is true for

j; log T'y(z), it is true for T'y(z). We shall therefore confine ourselves to the considera~
tion of the function
b =— 5 log 1, (2).
By the fundamental difference equations of § 20, we have

et o) — () = (o)
bt o) — b () = (] )

. . &? ;
where, for convenience, we put yi(z) = o log T, (?).

* Moorz, ¢ Math. Ann.,” vol. 48, pp. 49 ¢t seg. MOORE uses the term only to deseribe functions which
cannot be generated by a differential equation with algebraic coefficients.
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Suppose that :
y = ¢ (x) satisfies the differential equation

f(.’];, y’ y’? ot y(”>> = O’

so transformed that it is rational and integral in y and its derivatives.
Let the terms of class s be symbolically

Ry() Q° (%), By (2) Qu(y), - - -, Ru(2) QF(y);
in terms of class (s — 1) being
So (@) Q) -+ oo , 8y () Qomy (),

and the functions R(x), S(z) being holomorphie.

If ¢(x) satisfies the differential equation, ¢(z) 4 (2| w,) will satisfy the equation
in which (x4 w,) is written for « and ¢(z) 4+ ¥(r|w,) the equation in which (z + w,)
is written for x. |

Make the first substitution, divide the equations by Ry(x) and R (z + ;) respec-
tively, and subtract one from the other. We find

By + o)
2 (7 + o))

(@ + @)
Ry (% + o)

Qs[d(@) + P (w|w) T+ . . + Q¢ () + ¢ (@]w))]
R: ()

—{R G Q@+ -+ 3 QI ] QO [() + (] 0) ] — QL)
-+ terms of lower class== 0.
But I[¢(e) + el 0s)] — QO [4())

consists solely of terms of lower class than s.
Hence either the equation which has been obtained vanishes identically, or we can

reduce the equation for y to one in which there are fewer terms of class s.
The equation cannot vanish identically uunless the coefficients of the various terms
of class s all vanish, which necessitates that the ratios

Ry(2) R (@)
W@’ Ry()

are doubly periodic functions of = of periods o, and w,.
The equation for y can thus be always reduced to one of the form

R(z) [po(#) Q(y) + . - . + pa(2) Q5 ()]
+ Sp(2) Qi (y) + . - .+ Su(x) Qi (y)

-+ terms of lower class = 0.

where all the coeflicients are holomorphic functions, and, in addition, the functions
p(x) are doubly periodic of periods w, and w,.
VOL. CXCVI.—A, 3D
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Divide the equation by R(x) and subtract it from the equation which results from
changing « into  + . We obtain

Po(@)[QF {() + (| w))} — QM p()} ]+ . . o+ pr(@)[QHb(w) + (| wy)}
— Qi {p()}]

+ Q1) e o) — 1) QT
+ RT%:TS () F (@] o)} —~ 1%(“)‘ -1 (p(x)}
+ terms of lower class = 0.

This equation will not vanish identically unless the functions

Si() Su(x)
R@) """ R

Aot o) =f@) = 2 pule) Qilh(z]o)]

all satisty 1elat1ons of the form

and therefore by symmetry relations of the form

o o) = /@)= 2 pe () QF | Holo) |

The quantity (n 4 1) which gives the number of terms on the right-hand side of
these two relations will not vanish unless the original equation can be reduced to the
form

R(@)[ppo () Qiy) + . - 4 pus (2) QU ()

CF Pae () Qi () + - e () Qi (1)
+ To(@) Qe () + - - - +Tu(x) Q(y)
-+ terms of lower clags = N G

where the coeflicients are holomorphic functions of x and the p’s are doubly periodic
functions of periods w, and e,
Fither then the original equation can be reduced to this form, or at least one of the

ratios _U_O_) l( )

R’ R

equations of the form

is composed of an additive number of solutions of dlfference

{f(w o) =/ @) = pa) b (@]o)
S (@4 wy) —f(z) = p(2) § (2|)

But the most general solution of such a pair of equations is

q (%) ¢ (%) + 7 (),
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where g(x) and r(x) are doubly periodic functions of x of periods w; and w,. And
So(*) Su()
R’ """ R@®)

therefore one of the ratios must be a function generated from the

function Ty(z| ), w,).
The original equation therefore either contains the double gamma function
implicitly among its coeflicients, or it is reducible to the form (1).

Continue our former procedure, and we see that either at least one of the ratios
T, (%) T,,L(x) . ] . NERT ) . .
R R ® composed of an additive number of equations of the type

So+o) = f2)=p @) Qi@ )
S @+ o) = f(x) =p () Q {d (z]0);

and is therefore generated from the double gamma function, or the original equation
is reducible to one in which the ratios of terms of the three highest classes are doubly
periodic functions of  of periods o, and w,.

The successive repetitions of the argument are now evident. Ultimately we
reduce the equation to one in which either all the coefficients are doubly periodic
functions (which is absurd), or to one in which the last term is generated from the
double gamma function.

Thus the proposition is established. The double gamma function cannot satisfy a
differential equation in which the coeflicients are finite combinations of, e.g.,

(1) Rational or irrational algebraic functions of w,
(2) Simply or doubly periodic functions,

(3) Simple gamma functions,

(4) G functions,

(5) Theta functions,

or, in fact, of any functions which are not substantially reducible to or compounded
of the double gamma function itself.

3 D2



